Systems for Disaster Management

Stanimir Arnaudov, stanimir@mytum.de

March 25, 2007

Department of Informatics | Technische Universität München

Motivation

Terrorist attacks

Natural disasters

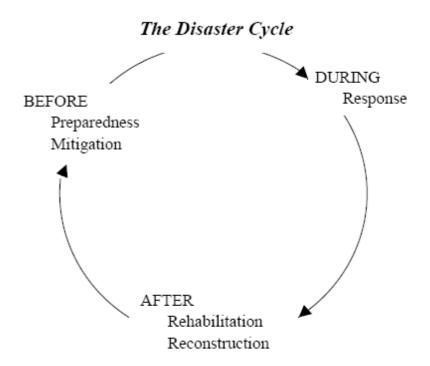
Music festivals, conventions, the Olympics, etc.

Overview

- **Disaster Managements**
 - Disasters characteristics and management challenges
 - The Disaster Cycle
 - Planning
 - Response
- **Disaster Management Systems**
 - Requirements
 - 2D User Interfaces
 - 3D User Interfaces
- Conclusion

Characteristics of Disasters

- Large number of Victims
- Large number of Relief Personnel
- Respondents from separate Public Service Organizations e.g. Police, Firefighters, Paramedics
- Quickly changing situation


Disaster Management Challenges

- Realistic planning
- Time critical decision making
- Vast amount of information
- Efficient resources management
- Counting, sorting and attending to the victims

The Disaster Cycle

- Mitigation
- Preparedness
- Response
- Recovery

Preparedness For Large Scale Emergencies

- Partial inadequacy of current disaster preparedness
- Rehearsal and evaluation of resources allocation and management
- **Emergency Operation Command Centers**
- Training of relief units
- Acquisition of situational awareness
- Stockpiling

Disaster Response

- 'Golden Hour'
- **Information Gathering**
- Resources allocation
- Communication
- **Accident Development Monitoring**
- Triage

Overview

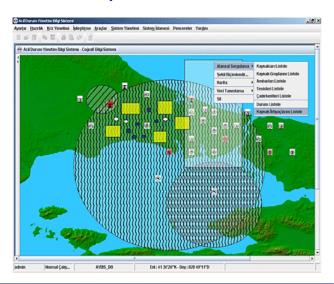
- **Disaster Managements**
 - Disasters characteristics and management challenges
 - The Disaster Cycle
 - Planning
 - Response
- **Disaster Management Systems**
 - Requirements
 - 2D User Interfaces
 - 3D User Interfaces
- Conclusion

Disaster Management Functional Requirements

- Dependability
 - Confidentiality patient data
 - Data Integrity
 - Availability
 - 99.5% Service Level
 - 5 minutes maximum down time
- Controllability
 - Accountability Logs, Data Owners and Creators, etc.
 - Legal Liability no third party data manipulations

Disaster Management Non -Functional Systems Requirements

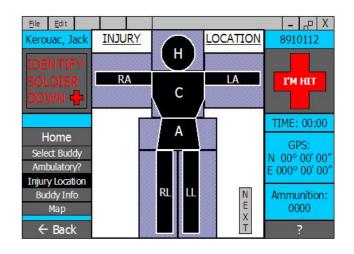
- **Various Time Limits**
 - medical checks time limit
 - transportation time limit
 - many more depending on the system objectives
- Non Distractive
- Intuitive


Overview

- **Disaster Managements**
 - Disasters characteristics and management challenges
 - The Disaster Cycle
 - Planning
 - Response
- **Disaster Management Systems**
 - Requirements
 - 2D User Interfaces
 - 3D User Interfaces
- Conclusion

2D User Interfaces in Disaster Management Information Systems

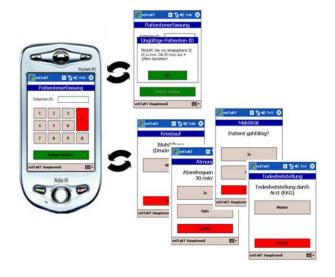
- Desktop based distributed systems by Siemens, MilSOFT, MultiTeam and others
- Emphasis on communication, information gathering and coordination
- Standard 2D User Interfaces
- Development towards 3D


Real-time Mobile Triage

- Definition: Prioritizing the victims according to the severity of their medical condition
- Different Application Areas battlefield, urban disasters, etc.
- Triage by first respondents vs. Real-time patients monitoring
- A number of prototypes under evaluation mostly on PDAs
- Data gathering for situation assessment

2D User Interfaces for Triage

- US Army ARTEMIS
 - **Combat Casualty Care**
 - Vital signs real-time remote monitoring
 - Triage strategies analysis
 - One mobile device per soldier
- University of Ottawa
 - Pediatric Emergency Department
 - Rule-based decision model for triage recommendation
 - One mobile device per medic



2D User Interfaces for Triage

- Simon Nestler, TUM
 - Mass casualties emergency
 - mSTaRT Triage algorithm
 - One mobile device per first respondent
 - Extension by GPS planned
- M-AID
 - First aid algorithm performed by a lay person before medics have arrived
 - Mobile phone application

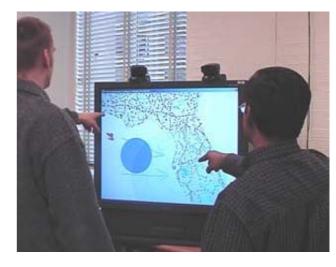
Overview

- **Disaster Managements**
 - Disasters characteristics and management challenges
 - The Disaster Cycle
 - Planning
 - Response
- **Disaster Management Systems**
 - Requirements
 - 2D User Interfaces
 - 3D User Interfaces
- Conclusion

Advantages of 3D User Interfaces

- Lower Abstraction Level intuitive interaction
- Interaction as in real world environment spatially integrated ubiquitous widgets
- Allow to concentrate on the given task only
- Multi modal 3D UIs allow more efficient interaction than unimodal

3D UI Concepts - Suitability for Disaster Management


- Travel and Way finding
- Manipulation
- Selection
- Multimodality

3D UIs of Emergency Planning

- VR/AR Training in simulated emergencies
 - Transfer spatial knowledge to the real world
 - Controlled environment (here fire fighting)
 - Various Scenarios
- Multi-user 3D GIS interface
 - Hand gestures from multiple users
 - Response planning
 - **Evacuation planning**

3D UIs for relief teams command – a Multi modal 3D HCI system

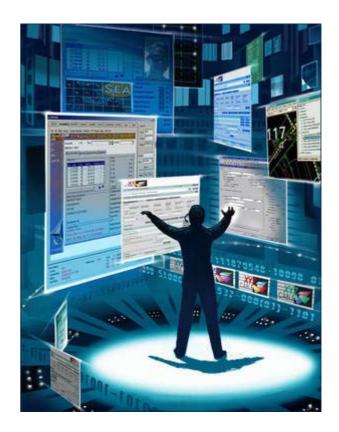
- Natural interaction with a large screen display – tracking of the users hands
- Simultaneous use of speech and gesture
- Selection and issuing of orders

Spatial Orientation/Wayfinding and Disaster Management

- Definition: Knowledge of user location and viewing direction
- Maps
 - You-Are-Here
 - Multiscale
 - **Rotation Mapping**
- Position Relative to Landmarks or Artificial Landmarks
- Compasses
- Signs
- **Trails**

Situational Awareness in Disaster Management

- Definition: Spatial Orientation + Spatial Knowledge
- Locating and prioritizing victims
- Awareness of other rescue teams
- Information about current and developing hazards


Auditory Displays In Disaster Management

- **Direction Finding**
 - **Binaural Cues**
 - Spectral and Dynamic Cues
- Situational Awareness
 - **Navigation**
 - Warnings
 - Devices Reading (Geiger Counter, etc.)

Conclusion

- Disaster management is just starting to utilize IT
- Significant potential of 3D User Interfaces for Disaster Management
- Outlook
 - Intuitiveness of interaction but not interfering with main rescue task
 - **Enabling Technologies** advanced Head Mounted Displays, Ubiquitous Computing and Sensors, CPU Power etc.

