Even degree surfaces

Joint Advanced Student School

Maria Belkina

April 2007

JASS 2007

Library of even degree surfaces

Agenda

- Introduction
- Quadrics and their kinematical description
- Superquadrics
 - Definition
 - Examples
 - Applications
- Conclusion

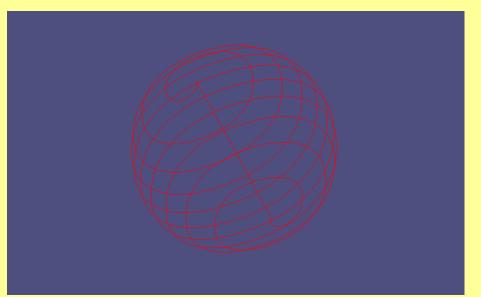
Introduction

- Disadvantages of polygonal-based technologies:
- Low precision
- Number of polygons depends on distance from an object
- Lots of "garbage"(degenerate polygons)
- Analytical models solve these problems
- Need of classification of higher degree surfaces

Superquadrics

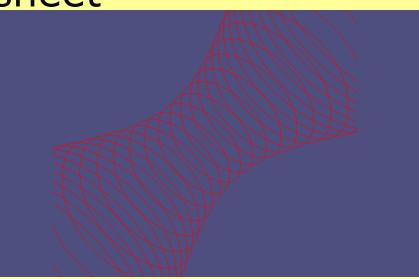
- Parametrical description of quadrics
- Description of quadrics based on spatial spiral
- Sphere(ellipsoid)
- Hyperboloid
- Cone
- Paraboloid

$\square Ellipsoid$ $\begin{cases} x = \sqrt{(r^2 - z^2)} \times sin (z^*step), \\ y = \sqrt{(r^2 - z^2)} \times cos (z^*step), \\ Z1 \le z \le Z2 \end{cases}$



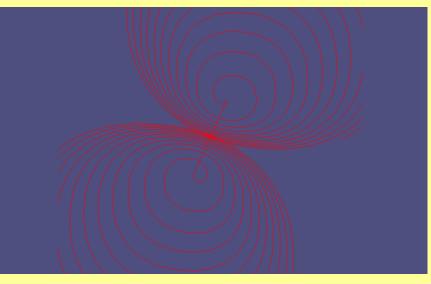
Hyperboloid of one sheet

 $\begin{cases} x = \sqrt{(r^2 + z^2)} \times \sin z, \\ y = \sqrt{(r^2 + z^2)} \times \cos z, \\ Z1 \le z \le Z2 \end{cases}$



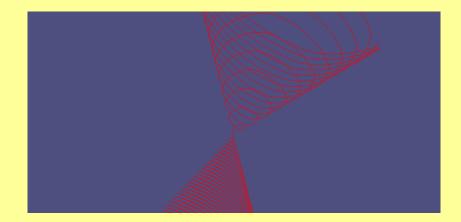
Hyperboloid of two sheets

 $\begin{cases} x = \sqrt{(-r^2 + z^2)} \times \sin(z^* \text{step}), \\ y = \sqrt{(-r^2 + z^2)} \times \cos(z^* \text{step}), \\ Z1 \le z \le Z2 \end{cases}$



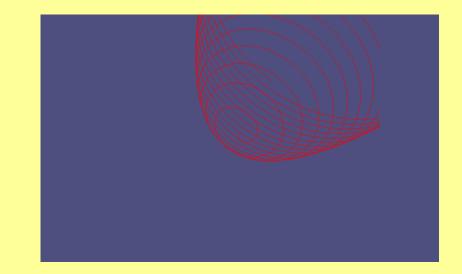
Cone

(x = z × sin (z*step), y = z × cos (z*step), Z1<= z <=Z2</pre>



Paraboloid

 $\begin{cases} x = \sqrt{z} \times \sin z, \\ y = \sqrt{z} \times \cos z, \\ Z1 \le z \le Z2 \end{cases}$



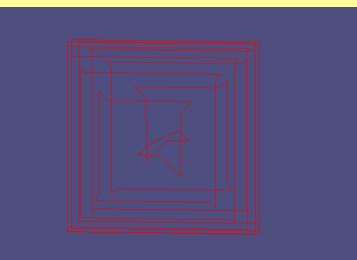
- Superquadrics are a generalization of quadrics, being very flexible 3-dimensional parametric objects.
- Mathematical representation of Superquadric is very simple
- By adjusting a relatively few number of parameters of a superquadric, a large variety of shapes may be obtained.
- Term "Superquadric" was defined by Barr in "Superquadrics and angle preserving transformations"(1981)

- Description of kinematical superquadrics with spatial spirals
- Classification is similar to given classification of quadrics
 - Only sine and cosine functions are used
 - Commonly:
 - x = form*cos^p(z*step)
 - y = form*sin^p(z*step)
 - Z1 <= z <= Z2

Examples of superquadrics

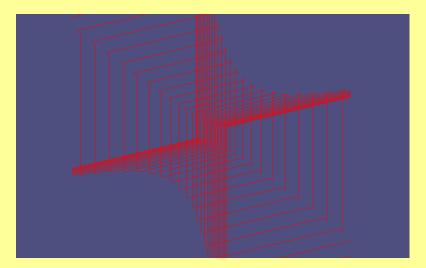
- Sphere(ellipsoid)
- Hyperboloid
- Cone
- Paraboloid

$\square Ellipsoid$ $\begin{cases} x = \sqrt{(r^2 - z^2)} \times sin^p z, \\ y = \sqrt{(r^2 - z^2)} \times cos^p z, \\ Z1 \le z \le Z2 \end{cases}$



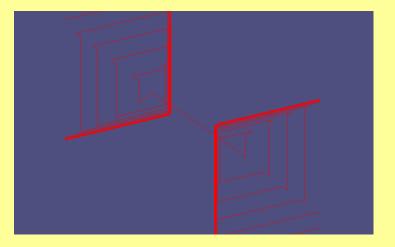
Hyperboloid of one sheet

 $\begin{cases} x = \sqrt{(r^2 + z^2)} \times \sin^p z, \\ y = \sqrt{(r^2 + z^2)} \times \cos^p z, \\ Z1 \le z \le Z2 \end{cases}$



Hyperboloid of two sheets

 $\begin{cases} x = \sqrt{(-r^2 + z^2)} \times sin^p (z^*step), \\ y = \sqrt{(-r^2 + z^2)} \times cos^p (z^*step), \\ Z1 \le z \le Z2 \end{cases}$



Cone

 $\begin{cases} x = z \times sin^{p} (z^{*}step), \\ y = z \times cos^{p} (z^{*}step), \\ Z1 \le z \le Z2 \end{cases}$

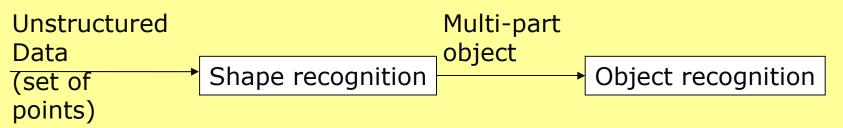
Classification of superquadrics by Barr:

Туре	Representation
Superellipsoid	$\underline{x}(\eta,\omega) = \begin{bmatrix} a_1 & \cos^{\epsilon_1}\eta & \cos^{\epsilon_2}\omega\\ a_2 & \cos^{\epsilon_1}\eta & \sin^{\epsilon_2}\omega\\ a_3 & \sin^{\epsilon_1}\eta \end{bmatrix}, \begin{array}{ccc} -\pi/2 & \leq & \eta & \leq & \pi/2\\ & -\pi & \leq & \omega & < & \pi \end{bmatrix}$
Superhyperboloid of one sheet	$\underline{x}(\eta,\omega) = \begin{bmatrix} a_1 & \sec^{\epsilon_1} \eta & \cos^{\epsilon_2} \omega \\ a_2 & \sec^{\epsilon_1} \eta & \sin^{\epsilon_2} \omega \\ a_3 & \tan^{\epsilon_1} \eta \end{bmatrix}, -\pi/2 < \eta < \pi/2 \\ -\pi \leq \omega < \pi$
Superhyperboloid of two sheets	$\underline{x}(\eta,\omega) = \begin{bmatrix} a_1 & \sec^{\epsilon_1} \eta & \sec^{\epsilon_2} \omega \\ a_2 & \sec^{\epsilon_1} \eta & \tan^{\epsilon_2} \omega \\ a_3 & \tan^{\epsilon_1} \eta \end{bmatrix}, \begin{array}{ccc} -\pi/2 & < & \eta & < & \pi/2 \\ -\pi/2 & < & \omega & < & \pi/2 \\ \pi/2 & < & \omega & < & 3\pi/2 \\ \end{array} $ sheet 1
Supertoroid	

- Superquadrics can be used for:
 - Scene(object) recognition
 - Tracking of changing objects
 - Computer-aided design

Scene recognition

Scene recognition:



■ During object recognition objects are matched with precalculated ones, stored in database → size of these objects is important → describing objects with superquadrics

- Scene recognition: Possible ways to break objects being recognized into superquadrics:
 - Region growing
 - Split and merge

- Tracking of changing objects
 - Can be used for tracking medical data

- Computer-aided design
 - Analytical models of superquadrics can be useful in computer-aided modeling, providing possibilities for both smooth and sharp joining of objects

Computer-aided design

- Main limitation by using superquadrics they do not allow free-form modeling – can be removed through usage of following techniques:
 - Using superquadrics as field functions for blob models
 - Implementation of superquadric deformation techniques(but: it leads to change of the degree)

- Examples of transformation operations are
 - Tapering
 - Twisting
 - Bending

Applications of superquadrics: Computer-aided design

- Transformations: Tapering
 - Tapering function:

$$X = x$$

$$Y = f y(x) * y$$

$$Z = fz(x) * z$$

Where:

$$fy(x) = ty*x/ay + 1, -1 <= ty <= 1$$

 $fz(x) = tz*x/az + 1, -1 <= tz <= 1$

Applications of superquadrics: Computer-aided design

Transformations: Twisting

Twisting function:

$$A = f(x) = n^* \pi (1 + x/a)$$

X = x

$$Y = ycos(A) - zsin(A)$$

$$Z = ysin(A) + zcos(A)$$

n– number of twists

Applications of superquadrics: Computer-aided design

Transformations: Bending

- Bending function:
- A = ky
- X = x
- Y = -sin(A)(z-1/k)
- Z = cos(A)(z-1/k) + 1/k
- 1/k- radius of the curvature

Conclusion

Thanks for your attention!

Any questions?