Adding the fourth variable to the surface algebraic equation

Tarasova Tatyana

The fourth variable

Some surface property:

- Temperature
- Rigidity
- Viscosity
- Pressure

The values of the fourth variable will be represented with the colors.
x, y, z geometry
c - coloration

Property - surface dependence examples

Functional dependence between shape and a property (the fourth variable) can be different:

$$
\begin{gathered}
c^{2}-5 x c-255 c-10 x^{2}-10 y^{2}-10 z^{2}+500=0 \\
\cos ^{2}(c)-5 x \operatorname{Sin}(c)-255 c-10 x^{2}-10 y^{2}-10 z^{2}+500=0
\end{gathered}
$$

Color equation

Color polynomial

Power (k) Number of the variables (n)			
	2	3	4
1	3	4	5
2	6	10	15
3	10	20	35
4	15	35	70
5	21	56	126

The number of the coefficient for the polynomial =

$$
\begin{aligned}
& \left\{N_{k, n}\right\}=\left\{N_{k-1, n}\right\}+c_{n+k-1}^{k}= \\
& N_{i-1}+\frac{(n+k-1)!}{k!(n-1)!}
\end{aligned}
$$

Visualization

I. Ways of solving the equation of the four variables
II. Color Equation roots and color correspondence $\mathrm{n} \rightarrow$ one color

I. Two way of solving visualization problem of the four variable equations

1. The property is a constant value for the whole surface
2. The property is irregularly spread on the surface

1. The property is a constant value for the whole surface

$c x 2+255 y 2+255 z 2=4000$

128G

192G

2. The property is irregularly spread on the surface

1. Color equation $F(x, y, z, c)$
2. Surface equation Set some value to C (0 or 1) in order to get surface equation.
$F(x, y, z, c) \rightarrow F(x, y, z)$
3. Property equation Put calculated x, y, z values to the initial equation in order to get one variable equation. $F(x, y, z, c) \rightarrow F(c)$
4. The property is irregularly spread on the surface
$F(x, y, z, c) \rightarrow F(x, y, z)+F(c)$
Coordinates systems may be different for these equations
Global for all
$F(c)$ local coordinate system coincides with $F(x$, y, z) local coordinate system
Each equation has its own system

II. Color Equation roots and color correspondence

> Roots absence. Form disappears. Set some color for root absence.
$>$ One or more roots

> Color maps. Value - Color.

One or more roots

$50 x y c+50 x z c+25 y z c+c^{2}-255 c-10 x^{2}-10 y^{2}-10 z^{2}+500=0$

$$
C C_{j}=C_{j}-\operatorname{Min}\left(C_{j}\right) \quad \operatorname{Min}\left(C_{j}\right)=-3280
$$

Coefficients influence

$100 x c+50 x y c+50 x z c+c^{2}-255 c-10 x^{2}-10 y^{2}-10 z^{2}+500=0$
$100 x c+100 y c+100 z c+c^{2}-255 c-10 x^{2}-10 y^{2}-10 z^{2}+500=0$
$C C_{j}=C_{j}-\operatorname{Min}\left(C_{j}\right)$
$C C_{j}=C_{j}-\operatorname{Min}\left(C_{j}\right)$
$\operatorname{Min}\left(C_{j}\right)=-3280$

Coefficients influence

Color maps

$100 \operatorname{Sin}(x) \operatorname{Sin}(x) c^{2}+100 \operatorname{Cos}(y) \operatorname{Cos}(z) c-10 x^{2}-10 y^{2}+10 z^{2}+10=0$

$($ MeanRoot $=0)$ color $=$ Red
(MeanRoot $<0) \quad$ color $=$ Green
(MeanRoot $>0) \quad$ color $=$ Blue

Color maps

$100 \operatorname{Sin}(x) \operatorname{Sin}(x) c^{2}+100 \operatorname{Cos}(y) \operatorname{Cos}(z) c-10 x^{2}-10 y^{2}+10 z^{2}+10=0$

Color map is bigger then in previous example

Root absence

Conductivity and diffusion tasks in the athematica Packet

Mathematical physics tasks in the MATLAB

Color map of temperature spreading inside the car

Thanks!

