
Lowest Common Ancestor(LCA)

Fayssal El Moufatich

Technische Universität München
St. Petersburg

JASS 2008

1 Introduction

LCA problem is one of the most fundamental
algorithmic problems on trees. It is concerned
with how we can find the Least Common
Ancestor of a pair of nodes. Over the last 3
decades, it has been intensively studied mainy
because:

• It is inherently algorithmically beautiful.

• Fast algorithms for the LCA problem can
be used to solve other algorithmic prob-
lems.

2 Definitions

Before embarking into the technicalities of
the different algorithms for LCA, let us first
agree on the terminology that we will be using
throughout this article.
Let there be a rooted tree T(E,V). A node x ∈
T is called an ancestor of a node y ∈ T if the
path from the root of T to y goes through x.
Also, a node v ∈ T is called to be a common
ancestor of x and y if it is an ancestor of both
x and y. Hence, the Nearest/Lowest Common
Ancestor, NCA or LCA, of two nodes x, y is
the common ancestor of x and y whose distance
to x (and to y) smaller than the distance to x of
any common ancestor of x and y. From now on,

we denote the NCA of two nodes x and y from
the tree T as nca(x, y). As we have already
pointed out, efficiently computing NCAs has
been studied extensively for the last 3 decades
in both online and offline settings.

3 Example

Here follows an example for a tree. Choosing
two arbitrary nodes from the tree, one is inter-
ested in finding their lowest common ancestor.

0

1

2 3

4

5 6 7

8 9

For example, the nca(2, 5) = 0, nca(7, 5) = 4,
and nca(0, 9) = 0 .

4 Applications

A procedure solving the NCA problem has
been widely used by algorithms from a large

1

Fayssal El Moufatich March 23, 2008

spectrum of applications. To point out, LCA
algorithms have been used in finding the max-
imum weighted matching in a graph, finding
a minimum spanning tree in a graph, find-
ing a dominator tree in a graph in a directed
flow-graph, several string algorithms, dynamic
planarity testing, network routing,solving vari-
ous geometric problems including range search-
ing, finding evolutionary trees, and in bounded
tree-width algorithms as well as in many other
fields.

5 Survey of Algorithms

One of the most fundamental results on com-
puting NCAs is that of Harel and Tarjan [5],
[3]. They describe a linear time algorithm to
preprocess a tree and build a data structure
that allows subsequent NCA queries to be an-
swered in constant time!. Several simpler al-
gorithms with essentially the same properties
but better constant factors were proposed af-
terwards. They all use the observation that it
is rather easy to solve the problem when the
input tree is a complete binary tree.We will be
having a short view on the properties of the
Harel and Tarjan algorithm, and then we will
be considering a simpler algorithm that was
presented later by Farach and Bender.

6 How do we do it?

We have said in the previous section that
finding the LCA of arbitrary two nodes
from a completely balanced binary tree is
rather simple. We proceed by first label-
ing the nodes by their index in an inorder
traversal of the complete binary tree. It
follows that if the tree has n nodes, each
such number occupies ` = blog(n)c bits. We
assume that the LSB is the rightmost and
that its index is 0. Let denote inorder(x)
and inorder(y) to be the inorder indexes of

x and y. Then, let i = max((1), (2), (3)) where:

1. index of the leftmost bit in which
inorder(x) and inorder(y) differ.

2. index of the rightmost 1 in inorder(x).

3. index of the rightmost 1 in inorder(y).

It turns out that it can be proved by induction
that:

Lemma 1. [2]the inorder(nca(x, y)) consists
of the leftmost ` − i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a
1 and i zeros.

An example that illustrates the meaning of
the above lemma follows.

7 Example

Before getting to the example illustrated in
Figure1, it might be worth noting here that
in this setting, the basic idea is construct
the inorder(nca(x, y)) from inorder(x) and
inorder(y) alone and without accessing the
original tree or any other global data structure.
This basically means that we are answering the
LCA query in constant time!
Now considering the tree depicted in Figure1,
let us choose to arbitrary nodes in the tree. Let
us say that we choose 6 and 9, i.e. 0110 and
1001. The position of the different bit from left
is 3, the index of the first 1 in 6 from right is
1 and the index of the first 1 in 9 from right
is 0. Hence max(3,1,0)= 3. Hence 1000 is the
lowest common ancestor of 6 and 9.

2

Fayssal El Moufatich March 23, 2008

Figure 1: Inorder labeling for a completely balanced binary tree [6]

8 So what if the input tree is
not a completely balanced
binary tree?

In such case, one can simply do a mapping to
a completely binary balanced tree. It turns
out that different algorithms differ by the way
they do this mapping. However, all algorithms
have to use some precomputed auxilliary data
structures and the labels of the nodes to com-
pute the NCAS due the usage of the completely
balanced binary tree mapping. Unfortunately,
most of the algorithms for general trees do not
allow to compute a unique identifier of nca(x,y)
from short labels associated with x and y alone.
However, one can prove the following interest-
ing theorem:

Theorem 2. There is a linear time algorithm
that labels the n nodes of a rooted tree T with
labels of length O(log n) bits such that from the
labels of nodes x, y in T alone, one can compute
the label of nca(x, y) in constant time.

here follows a sketch for the proof of the
above theorem. However by no means this

sketch is inclusive. For complete details, please
refer to the related paper of Alstrup et al[?].

Proof. [4]

• Use lexigraphic sorting the sequence of in-
tergers or binary strings.

• Use results from Gilbert and Moore on al-
phabetic coding of sequences of integers
〈b〉k(|bi| < log n− log yi +O(1) for all i).

• use labeling along HPs, Heavy Paths.

9 NCA and Discrete Range
Searching (DRS)

Gabow, Bentley and Tarjan[9] nicely observed
that one-dimensional DRS problem is equiva-
lent to NCA problem.Hence, DRS is used by
most of simple NCA algorithms. here follows
a definition for the DRS problem:

Definition 3. DRS Problem Given a sequence
of real numbers x1, x2, ...xn, preprocess the se-
quence so that one can answer efficiently sub-
sequent queries of the form:

3

Fayssal El Moufatich March 23, 2008

given a pair of indices (i, j), what is the maxi-
mum element among xi,...,xj or max(i, j).

DRS problem is a fundamental geometric
searching problem. It turns out that DRS can
be reduced to NCA by constructing a Carte-
sian tree for the sequence x1, ..., xn [9].

10 What is a Cartesian tree?

Definition 4. Cartesian Tree The Cartesian
tree of the sequence x1, ..., xn is a binary tree
with n nodes each containing a number xi and
the following properties:
Let xj = max(x1, ..., xn)

1. The root of the Cartesian tree contains xj .

2. The left subtree of the root is a Cartesian
tree for x1, ..., xj−1.

3. The right subtree of the root is a Cartesian
tree for xj+1, ..., xn.

The Cartesian tree for x1, ..., xn can be con-
structed in O(n) [Vuillemin, 1980]. The algo-
rithm is rather simple and should be left to
the curious reader to tinker with. As such, the
maximum among xi, ..., xj namely corresponds
to the NCA of the node containing xi and the
node containing xj .

11 What about NCA as DRS?

As stated above Gabow et al. also show how to
reduce the NCA problem to the DRS problem.
Given a tree, we first construct a sequence of
its nodes by doing a depth first traversal. Each
time we visit a node, we add it to the end of the
sequence so that each node appears in the se-
quence as many times as its degree.[a prefix of
the Euler tour of the tree]. Now, let depth(x)
be the depth of a node x. We replace each
node x in the sequence by -depth(x). Then, to
compute nca(x, y), we pick arbirary 2 elements

xi and xj representing x and y, and compute
the maximum among xi, ..., xj . The node cor-
responding to the maximum element is simply
nca(x, y)!

12 Euler tour of a tree

Figure2 shows an example for an Eulerian tour
of a tree.

13 What is the LCA of given
two nodes then?

After getting the sequence of the Euler tour of
the tree, the LCA of given two nodes would be
simply the node of the least depth (i.e. Clos-
est to the root) that lies between the nodes in
the Euler tour. Hence, finding specific node in
the tree is equivalent to finding the minimum
element in the proper interval in the array of
numbers. The latter problem, it turns out, can
be solved by min-range queries.

14 Range Minimum Query
(RMQ) Problem

This is the same as the DSR problem but out-
puts the minimum instead.

Definition 5. RMQ Problem Structure to
Preprocess: an array of numbers of length n.
Query: for indices i and j and n, query
RMQ(x,y) returns the index of the smallest
element in the subarray A[i...j].

Remark
As with the DSR algorithm, LCA can be re-
duced to an RMQ problem[1].

Figure3 shows an example for what we mean
by the RMQ of two indices in the array of a
sequence of numbers.

4

Fayssal El Moufatich March 23, 2008

Figure 2: Euler tour of a tree and the resulting sequence[7]

Figure 3: RMQ example for an array of numbers[8]

5

Fayssal El Moufatich March 23, 2008

15 Isn’t that a loop in our re-
duction?

At this point, the reader might be confused by
the circular approach of using LCA and RMQ.
Mainly, we started by reducing the range-
min/DSR problem to an LCA problem, and
now we want to solve LCA by reducing it or
an RMQ problem. The answer is of course no!
The constructed array of numbers has a special
property known as ∓1 property. Here follows
a definition of this property:

Definition 6. ∓1 propertyEach number dif-
fers by exactly one from its preceding number.

Hence, our reduction is a special case of the
range-min query problem that can be solved
without further reductions.
Our goal then is to solve the following problem:

Problem
Preprocess an array of n numbers satisfying
the ∓1 property such that given two indices i
and j in the array, determine the index of the
minimum element within the given range [i, j],
O(1) time and O(n) space.

16 Bender-Farach Algorithm
for LCA

This is an algorithm that was reengineered
from existing complicated LCA algorithms.
(PRAM (Parallel Random Access Machine)
from Berkman et al.). It reduces the LCA
problem to an RMQ problem and considers
RMQ solutions rather.

16.1 Näıve Attempt

It turns out that RMQ has a simple solution
with complexity

〈
O(n2),O(1)

〉
:

• Build a lookup table storing answers to all
the n2 possible queries.

• To achieve O(n2) preprocessing rather
than O(n3), we use a trivial dynamic pro-
gram.

16.2 A Faster RMQ Algorithm

In this case, the idea is to precompute each
query whose length is a power of 2. In other
words, for each i in [1, n] and every j in
[1, log n], we find the minimum of the block
starting at i and having length 2j . Expressed
mathematically, this means:

M [i, j] = argmink=i...i+2j−1A[k] (1)

Table M has size O(n log n). We fill it in using
dynamic programming, which will illustrated
afterwards. We find the minimum in a block of
size 2j by comparing the two minima of its con-
stituent blocks of size 2j−1. Formally speaking,
we have:

M [i, j] = M [i, j−1]if A[M [i, j−1]] ≤ A[M [i+2j−1, j−1]]
(2)

and

M [i, j] = M [i + 2j−1, j − 1]otherwise (3)

16.3 How do we use blocks to com-
pute an arbitrary RMQ(i,j)?

For this sake, we select 2 overlapping blocks
that entirely cover the subrange. Let 2k be
the size of the largest block that fits into the
range from i to j, i.e. k = blog(j − i)c .. Then
RMQ(i, j) can be computed by comparing the
minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j
(M(j − 2k + 1, k)). The values needed are all
already computed values, hence we can find
RMQ in constant time!

16.4 Remarks

This gives the Sparse Table(TS) algorithm
for RMQ with complexity 〈O(n log n),O(1)〉 ..

6

Fayssal El Moufatich March 23, 2008

The total computation to answer an RMQ
query is then 3 additions, 4 array reference and
a minimum, and 2 ops: log and floor. This
can be seen as problem of finding the MSB of
a word. It might be also worth noting that
LCA problem is shown to have Ω(log log n)on
a pointer machine by Harel and Tarjan.

16.5 An 〈O(n),O(1)〉 algorithm for
∓RMQ

Now, we want to consider even a faster algo-
rithm for ∓RMQ. Suppose we have array A
with ∓ restriction. We use a lookup-table to
precompute answers for small subarrays, thus
removing log factor from preprocessing. We
proceed by partitioning A into blocks of size
log n

2 . Then, we define an arrayA’[1,..., 2n
log n]

where A’[i] is the minimum of the ith block of
A. We also define an equal size array B where
B[i] is a position in the ith block in which A[i]
occurs. B is used to keep track of where the
minima of A came from.
The Sparse Table algorithm runs on A in time
〈O(n),O(1)〉. Now, consider RMQ(i,j) in A:

• i and j can be in same block in which
case we process each block to answer RMQ
queries.

• in case i < j, then we consider the follow-
ing minimums:

– Minimum from i forward to end of its
block.

– Minimum of all blocks btw. is block
and js block.

– Minimum from beginning of js block
to j.

We can see the second minimum can be found
in constant time by RMQ on A since we al-
ready have in the our table.

16.6 How to answer range RMQ
queries inside blocks?

It turns out that in-block queries would be
needed for both the first and third values to
complete algorithm. Unfortunately RMQ pro-
cessing on each block would result in too much
time in processing. Also, one can notice that in
case we 2 blocks identical, we could share their
processing, but it seems we would have too
much hope that blocks would be so repeated!
As a result, a different observation would be
needed:

Observation
If two arrays X[1,...,k] and Y[1,...,k] differ by
some fixed value at each position, that is, there
is a c such that X[i]=Y[i] + c for every i, then
all RMQ answers will be the same for Xand Y.

Given the above observation, we then pro-
ceed by normalizing a block by subtracting its
initial offset from every element. Then, we use
the∓1 property to show there are actually very
few kinds of normlized blocks. For such sake,
we have the following to the rescue:

Lemma 7. There are O(
√

n) kinds of normal-
ized blocks

Proof. Adjacent elements in normalized blocks
differ by +1 or -1. Thus, normalized blocks
are specified by ∓1 vector of length 1

2 log n −

1. There are 2
1

2 log n
−1 =O(

√
n) such vectors

[1]

At this stage, we are basically done! We Cre-
ate O(

√
n) tables, one for each possible nor-

malized block. A total of O(
√

n) log2 n to-
tal processing of normalized block tables and
O(1) query time would be required. Finally, we
compute for each block in A which normalized
block table it should use for its RMQ queries.

7

Fayssal El Moufatich March 23, 2008

16.7 Wrapping up!

So we started by reducing from LCA prob-
lem to RMQ problem given reduction leads
to ∓1RMQ problem. We gave a trivial〈
O(n2),O(1)

〉
time table-lookup algorithm for

RMQ and show how to sparsify the table to
get 〈O(n log n),O(1)〉-time table-lookup algo-
rithm. Then, we used the latter algorithm on a
smaller summary array A, and then we needed
only to process small blocks to finish algorithm.
Finally, we noticed that most of these blocks
are the same by using the ∓1 assumption from
original reduction.(from RMQ problem point
of view).

17 A Fast Algorithm for
RMQ!

By now, We have 〈O(n),O(1)〉 ∓RMQ. Our
goal is to the general RMQ in the same com-
plexity. It turns out that this can be achieved
by reducing the RMQ problem to an LCA
problem again. Hence, to solve a general RMQ
problem, one would convert it to an LCA prob-
lem and then back to ∓1RMQ problem.

17.1 How?

We use the results of the following lemma:

Lemma
If there is a 〈O(n),O(1)〉 solution for LCA,
then there is a 〈O(n),O(1)〉 solution for RMQ.

Here O(n) comes from time needed to build
Cartesian Tree C of A and O(1) comes from
time needed to convert LCA to an RMQ an-
swer on A. We can prove that:

RMQA(i, j) = LCAC(i, j) (4)

. By this, our Reduction would be com-
pleted!

18 Final Remarks

As we have seen in this article, we can solve
the range-min query problem in an array of
n numbers with ∓1 property in O(1) query
time and O(n) preprocessing time. It turns
out that we can extend this to (O)(n) space as
well. We proceed by divide the array A into
m= 2n

log n buckets, each of size k= log n
2 .

It might be worth noting that there several
parallel and distributed versions for the LCA
algorithm, and that might also be one the rea-
sons for the popularity of this algorithms in
other fields.

References

[1] Michael A. Bender and Martin Farach-
Colton. The LCA Problem Revisited. 2000.

[2] B. Schieber and U. Vishkin. On find-
ing lowest common ancestors: Simplifica-
tion and parallelization. SIAM J. Comput.,
17:12531262, 1988.

[3] D. Harel and R. E. Tarjan. Fast algo-
rithms for finding nearest common ances-
tors. SIAM J. Comput.,13(2):338355, 1984.

[4] Stephen Alstrup, et al. Nearest Common
Ancestors: A Survey and a new Distributed
Algorithm. 2002.

[5] D. Harel. A linear time algorithm for the
lowest common ancestors problem. In 21st

Annual Symposium On Foundations of
Computer Science, pages 308-319, 1980.

[6] Mohamed Ahsan Yusuf Eida. Lowest Com-
mon Ancestor. Web Link

[7] Erik Demaine. Advanced Data Structures:
Lecture 11. 2003.

[8] Daniel P. Range Minimum Query and Low-
est Common Ancestor. Web Link

8

http://gim.org.pl/lca/Lowest_Common_Ancestor_Fast_Implementation.html
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

Fayssal El Moufatich March 23, 2008

[9] H. N. Gabow, J. L. Bentley, and R. E. Tar-
jan. Data structure for weighted matching
and nearest common acestors with linking.
In 1st Annual ACM Symposium on Dis-
crete Algorithms, pages 434-443, 1984.

9

	Introduction
	Definitions
	Example
	Applications
	Survey of Algorithms
	How do we do it?
	Example
	So what if the input tree is not a completely balanced binary tree?
	NCA and Discrete Range Searching (DRS)
	What is a Cartesian tree?
	What about NCA as DRS?
	Euler tour of a tree
	What is the LCA of given two nodes then?
	Range Minimum Query (RMQ) Problem
	Isn't that a loop in our reduction?
	Bender-Farach Algorithm for LCA
	Naïve Attempt
	A Faster RMQ Algorithm
	How do we use blocks to compute an arbitrary RMQ(i,j)?
	Remarks
	An "426830A O(n), O(1)"526930B algorithm for RMQ
	How to answer range RMQ queries inside blocks?
	Wrapping up!

	A Fast Algorithm for RMQ!
	How?

	Final Remarks

