
Tube-wave reflections in cased borehole

Alexandrov D.V.
Saint-Petersburg State University

Department of Physics
Laboratory of Elastic Media Dynamic

April 13, 2008

Summary

At low frequencies tube or Stoneley waves represent a dominant arrival propagating along boreholes.
They can be excited by the source in a well or by external source due to conversion from other wave
types. Tube wave experiences reflection at the bed boundaries, borehole diameter changes and frac-
tures or permeable zones. It was proven in previous studies that 1D effective wavenumber approach
provides simple and accurate low-frequency description of tube-wave propagation in open boreholes
surrounded by radially homogeneous formation. Tube waves become even more dominant in cased
boreholes, but casing further modifies wave propagation and reflection/transmission phenomena. In
this study we apply 1D effective wavenumber approach to radially inhomogeneous media and demon-
strate that it still provides excellent description of low-frequency tube-wave propagation. In particu-
lar, we focus on three models representative of cased boreholes: reflection from geological interfaces
behind casing, reflection from corroded casing section and reflection from idealized disk-shaped per-
foration in cased hole. In all three cases frequency-dependent reflection coefficient obtained by 1D
effective method and by finite-difference computations show excellent agreement.

1 Introduction

Tube (Stoneley) waves are useful for characterizing near-wellbore space since they are sensitive to
borehole diameter changes, variations in elastic properties and permeability of the surrounding for-
mations. The main part of tube-wave energy is concentrated inside the well. In open-hole acoustic
logging higher-frequency tube waves are used to detect and characterize fractures as well as to obtain
a permeability profile (Winkler et al., 1989; Krauklis and Krauklis, 2005). In cased boreholes low-
frequency tube-wave reflections can be used for estimation of quality and parameters of hydraulic
fractures (Medlin and Schmitt, 1994; Paige et el., 1995) as well as other purposes. We are interested
in the latter applications for cased boreholes where surrounding media is radially inhomogeneous
(casing, cement, formation). Currently only numerical finite-difference methods can handle the re-
flection/transmission problem for such systems. Finite-difference method provides little physical
insight into the problem. Approximate methods are useful for gaining better understanding of the
problem of tube-wave reflections in cased boreholes. In this study we utilize 1D effective wavenum-
ber approach suggested by White (1983) and extended by Tang and Cheng (1993). This approach
was originally developed for low-frequency tube waves in radially homogeneous formations and was
verified numerically for an open hole surrounded by elastic (Tezuka et al, 1997) and poroelastic for-
mations (Bakulin et al., 2005). Here we extend this approach to radially inhomogeneous media with
particular focus to cased boreholes.
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2 1D effective wavenumber approach

The problem of acoustic logging can be considered either from the point of exact analytical solution or
using numerical modelling. Good understanding of physical processes can be obtained from analyti-
cal solutionis, however the main disadvantage is the fact that amount of models which can be solved
analytically is rather limited. Such models are the simplest like borehole in homogenous isotropic
or anisotropic media. Therefor, more complex models, like fluid-filled wells with varying diameter,
or cased boreholes, are usually solved with numerical methods or approximate analytical methods.
The last ones need to be examined for adaptability and one of the simplest and most effective is to
compare results of approximate analytical methods with correspondent numerical modelling.

Approximate analytical method I have used in this work is 1D effective wavenumber approach.
Original formulation of 1D approach by White (1983) and later generalization by Tang and Cheng
(1993) assumed radial homogeneity of the media surrounding the fluid column. This was appropri-
ate to describe open-hole acoustic logging. While change in diameter (washout) could be treated,
no radial layering was assumed beyond the fluid-formation interface. Our interest lies in analyzing
interaction of tube waves with borehole structures in cased wells. Casing (and cement) represents
another radial layer with very distinct parameters that substantially alters the properties of the tube
wave (velocity, dispersion, attenuation) and ultimately modifies the reflection and transmission phe-
nomena in an unknown manner. It seems that only numerical methods, like finite-difference, can
correctly handle these interactions. Nevertheless, presence of elastic or poroelastic radial layering
without additional fluid layers still supports only one propagating tube wave albeit with modified
properties. Thus, it appears reasonable to assume that at least at low frequencies extension of 1D
approach should still be applicable. Let us verify this hypothesis by means of a series of numerical
tests.

Fig. 1: Fluid-filled borehole penetrates elastic layer embedded between two elastic half-spaces

Fig. 2: Stress vectorT is applied to a small area with normal vectorn

First, let us review the basics of 1D effective wavenumber approach (Tang and Cheng, 1993;
Bakulin et al, 2005). Consider a layer embedded between two equal half-spaces (figure 1). Coordi-
nates of upper and lower layer boundaries arez = 0 andz = L. Borehole intersect this layer and
has radiusR1 outside the layer andR2 inside. Tube-wave propagation is described with Helmholtz
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equation (2.1) whereφ(z) is tube-wave potential,k1 is Stoneley wavenumber outside the layer,k2 -
inside. Pressure and displacements can be found according to the equalities (2.2). Hereρf is fluid
density andω - cyclic frequency.

∂2φ1(z)
∂z2

+ k1φ1(z) = 0 z < 0, z > L

∂2φ2(z)
∂z2

+ k2φ2(z) = 0 0 < z < L

(2.1)

P = ρfω2φ, U =
∂φ(z)

∂z
(2.2)

Solution of equation can be found in the following form:

φ1 = eik1z + R1e
−ik1z,

φ2 = T2e
ik2z + R2e

−ik2z, φ3 = T3e
ik3z

(2.3)

,
whereR and T are designations for reflection and transmission coefficients. To obtain these

coefficients mass balance boundary conditions are set at each interface, in particular continuity of
pressure and fluid flow (2.4).

Continuity of pressure:P1(0) = P2(0), P2(L) = P3(L)

Continuity of fluid flow:
∮
S

−→
V
−→
NdS = 0 (2.4)

This results in a system of linear equation, and solutions of this system are reflection and trans-
mission coefficients from a layer embedded between two equal half-spaces (2.5).

R =
2i(k2

2s
2
2 − k2

1s
2
1) sin k2L

(k2s2 + k1s1)2e−ik2L − (k2s2 − k1s1)2eik2L

T =
4k2k1s2s1e

−ik2L

(k2s2 + k1s1)2e−ik2L − (k2s2 − k1s1)2eik2L

(2.5)

Heres is cross section area.
Now consider a multilayered model. The system of parallel-sided layers is intersected with fluid-

filled well with different radius in each layer. Like previous case in each vertically homogeneous
zone tube-wave propagation is described with 1D differential equations.

∂2φi(z)
∂z2

+ kiφi(z) = 0 (2.6)

Therefore wave potentials can be found in the following form:

φi = Aie
ikiz + Bie

−ikiz, (2.7)

whereki is wavenumber,Ai andBi - amplitude coefficients of up-going and down-going waves. It
is clear that interference reflection and transmission coefficients can be obtained from the equalities
(2.8).

R =
B1

A1
, T =

AN

A1
(2.8)
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Boundary conditions are the same as in the previous case, and we obtain a system of linear
equations where G is a propagation matrix (2.10).

Continuity of pressure:Pi−1(zi) = Pi(zi)

Continuity of fluid flow:
∮
Si

−→
V
−→
NdS = 0 (2.9)

(
Bi

Ai

)
= Gi

(
Bi+1

Ai+1

)
(

B1

A1

)
= G1

(
B2

A2

)
= ... = G1G2...GN−1

(
BN

AN

)
:= GT

(
BN

AN

) (2.10)

R =
(GT )12
(GT )22

, T =
1

(GT )22
(2.11)

Although equations (2.5) and (2.11) are obtained for homogeneous formation, we may apply
them without modification for radially inhomogeneous formation, provided that Stoneley wavenum-
ber is now computed for multi-layered model at hand. For simplicity in this study we assume radially
layered model with three layers: fluid, casing and formation. In this case effective wavenumber
k as a function of frequency is calculated numerically from set of equations representing bound-
ary conditions and assuming full bond between casing and formation. Once effective wavenumbers
are established for each vertically homogeneous zone, equations (2.11) are used to compute the re-
flection coefficient as a function of frequency and compare them with the corresponding quantities
found from finite difference modeling. Small tube-wave dispersion in cased boreholes allowed us to
use frequency-independent velocities in all numerical examples below since computations with and
without frequency dependence of the wavenumber are almost identical. Material parameters for all
models are summarized in Table 1.

3 Wavefield in cased borehole

3.1 Wavefield in isotropic homogeneous fluid

The key question now is how to obtain the wavenumber. Let’s consider homogeneous isotropic fluid.
Oscillations of fluid are described with equation (3.1.1), which is a form of Newton’s second low.
Hereρf is fluid density,u - fluid displacement andtik - stress tensor.

ρf
∂2ui

∂t2
=

∂tik
∂xk

, tik = λfδikdiv−→u = −pδik (3.1.1)

To understand stress tensor sense consider a small area with a normal vector−→n and a stress vector−→
T applied to this area (figure 2). Then components of this vector can be easily recovered provided
stress tensor components are known. If we substitute this expression in first equation, we will obtain
following equality:

ρf
∂2ui

∂t2
= λf grad div−→u . (3.1.2)

Here homogeneity of the media was used, that is independence of elastic constantλf from spatial
coordinates. It is convenient to solve this equation in terms of fluid pressure. If we consider system
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with point source, than we should put delta-function in the right side of the equation.

∆p(x, y, z, t)− 1
v2

f

p(x, y, z, t) = δ(t)δ(x, y, z), p = −div−→u ,
1
v2

f

=
λf

ρf
(3.1.3)

∆P (r, k, ω)− ω2

v2
f

P (r, k, ω) = δ(r) (3.1.4)

Time and Spatial Fourier transform leads to the equation (3.1.4). For the system has axial sym-
metry, one can rewrite this equation in cylindrical coordinates and obtain so-called Bessel equation
of zero-order. Solution of this equation are Bessel- and Hankel-function of zero-order. Solutions for
pressure and for displacement are presented below.

P (r, k, ω) = CfJ0(−iαfr) +
i

4
H

(2)
0 (−iαfr), αf = ω

√
k2

ω2
− 1

v2
f

, r =
√

x2 + y2 (3.1.5)

(
Ur

Uz

)
= Cf

(
αfJ1(−iαfr)
−kJ0(−iαfr)

)
− 1

4ρfω2

(
αfH

(2)
1 (−iαfr)

−kH
(2)
0 (−iαfr)

)
(3.1.6)

One can see that for infinite fluid with point source we have one unknown constantCf (indepen-
dent from spatial coordinates). Herek is wavenumber.

3.2 Wavefield in isotropic homogeneous elastic media

Now consider infinite homogeneous elastic media.

ρf
∂2ui

∂t2
=

∂tik
∂xk

, tik = λfδikdiv−→u + 2µεik (3.2.1)

For such media additional component appears in stress tensor (3.2.1). It contains strain tensorεik,
which for small deformations has following form:

εik =
1
2

( ∂ui

∂xk
+

∂uk

∂xi

)
(3.2.2)

ρf
∂2ui

∂t2
= (λ + 2µ)grad div−→u − rot rot−→u (3.2.3)

In this case motion equation becomes more complicated (3.2.3), but it still can be solved. After
time- and spatial fourier transform we will again obtain Bessel equation. But now there will be two
kinds of waves: p-wave (from primal) and s-wave (from secondary).(

Ur

Uz

)
= Cp

(
αpH

(2)
1 (−iαpr)

−kH
(2)
0 (−iαpr)

)
+ Cs

(
αsH

(2)
1 (−iαsr)

−kH
(2)
0 (−iαsr)

)
(3.2.4)

3.3 Boundary conditions

Now we should construct solution for the model we are interested in: cased borehole in homogeneous
media (figure 3).

Casing, a steel pipe, has thicknessa and inner radiusR. Solutions in previous sections were
obtained for infinite media and thus contain only outgoing waves. It’s clear that inside the casing
wavefield will be described with expression from the previous (3.2.4), but there will be also waves
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Fig. 3: Cased borehole in homogeneous elastic media

going in negative r-direction. Thus we have seven unknown constants: one in fluid, four in casing
and two in surrounding elastic media. To obtain them we should set boundary conditions at each
interface. They are:

• continuity of r-component of displacement on the boundary between fluid and casing:
Ur(R + 0) = Ur(R− 0),

• continuity of displacement on the boundary between casing and surrounding media:
−→
U (R + a + 0) =

−→
U (R + a− 0),

• continuity of stress-vector components:
trr|R+0 = trr|R−0, trr|R+a+0 = trr|R+a−0,
trz|R+0 = trz|R−0, trz|R+a+0 = trz|R+a−0.

There is no necessity in continuity of z-component of displacement because oscillation of fluid
and casing in z-direction are independent - fluid is nonviscous and therefore there is no friction on
the boundary between fluid and casing.

So, we have seven constants to find and a system of seven linear algebraic equations. After we
inverse matrix of this system we can obtain them as functions of frequency, wavenumber and media
elastic parameters.

M
−→
C =

−→
D =⇒

−→
C =

M̂

det M

−→
D

−→
C = {Cf , Cc

p+,Cc
p−, Cc

s+, Cc
s−, Ce

p+, Ce
p−}

(3.3.1)

But if determinant of this matrix is equal to zero for some values of parameters, then a singularity
will appear. This condition (det M = 0) leads to an equation, called ”dispersion equation”. From
dispersion equation one can obtain wavenumber as function of frequency for several wave modes.
The slowest one is tube wave.
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4 Modelling results

4.1 Reflection from geological interfaces behind casing

Figure 4 depicts the first model where cased borehole penetrates two thin horizontal layers. At low
frequencies these two layers generate a composite tube-wave reflection that can be computed using
equations similar to 2.5 but generalized to a four-layered 1D model. Figure 5 shows a comparison
of reflection coefficients obtained with 1D approachand a finite-difference code jointly developed by
Keldysh Institute of Applied Mathematics and Shell. In the latter case reflection coefficients are es-
timated by taking spectral ratios of reflected and incident tube waveforms. Good agreement between
the two sets of curves proves that the effective wavenumber approach does capture the most important
features of tube-wave interactions with formations in cased boreholes. When softer (plastic) casing
is used the tube-wave reflections are larger indicating increased sensitivity to variations of elastic pa-
rameters behind the casing as it is intuitively expected, while in case of steel casing this sensitivity is
muted due to stronger containment of the tube wave.

Fig. 4: Cased borehole intersects two elastic layers embedded between two elastic half-spaces.

Fig. 5: Reflection of the tube wave in Model 1 for two cases: plastic casing (red line) and steel casing
(blue line). Solid lines indicate coefficients obtained numerically with finite-difference code, while
dashed lines represent results of 1D effective wavenumber approach.

4.2 Reflection from corroded section of the casing

This section tests the 1D effective wavenumber approach for the case when variation in elastic pa-
rameters occurs in the properties of the first elastic layer - casing. The system under consideration
is cased borehole surrounded by homogeneous formation (Figure 6). Casing has a corroded section
with 0.8 m height. Density, longitudinal and shear velocities of corroded section are all reduced by
the same multiplier Q (0.2, 0.5 and 0.7) compared to the properties of non-corroded section. Material
parameters are given in the table below. Figure 7 confirms excellent agreement between approx-
imate reflection coefficients obtained with 1D approach and ground truth response computed with
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Fig. 6: Cased borehole in homogeneous elastic media; middle section of casing with 0.8 m height is
corroded.

Fig. 7: Reflection of tube wave from three different types of corroded section: the highest reflection
corresponds to the maximum difference between parameters of casing and corroded region.

finite-difference modeling. Notice that for reflection coefficient to become larger than 1%, elastic
parameters of corroded region need to be reduced by at least factor of two.

4.3 Idealized perforation in cased borehole

Given success in describing tube-wave interaction for cased borehole with constant radius, we de-
cided to explore more complicated models with varying borehole diameter. In particular, we focus
on ”idealized perforation model” (Bakulin et al., 2005) depicted on Figure 8. While the material
parameters in this model are identical to those for the corroded casing model of Figure 6 (except
for corroded section), the key distinction is that instead of corroded region there is now disk-shaped
perforation. Since formation is modeled as impermeable elastic space then effects related to fluid
mobility between borehole and formation are neglected and only reflection due to geometric (diame-
ter) changes are considered. Real perforation represents a small cylinder placed perpendicular to the
main borehole in a particular azimuth and thus it will have much more limited area of fluid-formation
interface. For this reason we call our model ”idealized (disk-shaped) perforation”. With all these
limitations ”idealized perforation model” is a useful first step since it can be easily treated by cylin-
drically symmetric approaches at hand: effective wavenumber scheme and radially symmetric elastic
finite-difference code. Material parameters are given in the Table 1 below. Obtained reflection co-
efficients are given on Figure 9 and Figure 10 for the case of finite-length (0.1 m) and zero-length
perforations respectively. The latter one represents a case where there is only a break in the casing
but radius of formation interface remains constant. In both cases the height of the perforation was
0.8 m. Again agreement is excellent between 1D approach and finite-difference numerical simula-
tion. In case of a finite-length perforation (Figure 9) reflection is completely dominated by diameter
change and is not dependent on casing parameters, whereas for zero-length perforation (Figure 10)
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steel casing leads to slightly higher reflection.

Fig. 8: Idealized model of a disk-shaped perforation (with no-flow at the sand face).

Fig. 9: Reflection of tube wave from perforation with 10 cm length for two cases: plastic casing (red
line) and steel casing (blue line).

Fig. 10: Reflection of tube wave from zero-length perforation for two cases: plastic casing (red
line) and steel casing (blue line). Solid lines - finite difference code; dashed lines - 1D effective
wavenumber approach.

5 Limitations of 1D effective wavenumber approach

While previous publications (White, 1983; Tezuka et al, 1997) implied that 1D approach always
works at low frequencies, we discovered that it can only be applied to models with ratio of layer
thicknessh to borehole radiusR of more than two(h > 2R). To understand the underlying reasons
let us revert to the case of open borehole in homogeneous elastic formation. At low frequency tube-
wave velocity is given by White (1983) as:

1
ct

=

√
ρ
( 1

B
+

1
M

)
, (5.1)

whereρ andB are fluid density and bulk modulus,M is formation shear modulus. If layers are intro-
duced, then 1D approach assumes that velocity in each zone is still described by the same equation
and is not distorted by layer boundaries. Since we can not verify this directly by velocity measure-
ment in a thin layer, we perform an indirect quasi-static diagnostics. For infinite borehole surrounded
with homogeneous formation the tube-wave velocity is deduced from this static elasticity relationship
(White, 1983)

ur

R
− p

2M
= 0 (5.2)

on the boundary between fluid in the borehole and elastic formation. Hereur is radial displacement
on the borehole wall,p - fluid pressure,R - borehole radius. If tube-wave velocity is to be described by
equation (5.1) within each layer, then equation (5.2) should hold at each point of the fluid-formation
boundary. However even for two elastic half-spaces instead of homogeneous media these conditions
do not hold in a vicinity of a boundary between half-spaces. The absolute value of deviation from
zero for the last expression (computed with finite-difference code) is presented on Figure 11.

The model under consideration is thin elastic layer(0.6 m < z < 1 m) intersected with an open
borehole(R = 0.1 m,h = 4R). Figure 11 shows that biggest deviations occur around the layer
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Fig. 11: Deviation
(

|ur/R−p/2M |
max |ur/R−p/2M |

)
from static formula (5.2) for a case of thin layer between two

half-spaces.

Fig. 12: Relative error of 1D approach in respect to finite-difference modelling as a function of
relative layer thickness

boundaries and two symmetric peaks overlap in the middle of the thin layer. Most likely mismatch of
acoustic properties between fully bonded layers of different materials invalidate relation (5.2) near the
interface. For two half-space model or this model withh = 4R 1D this deviation is not essential and
1D approach still produces reflection response that is close to finite-difference computation. When
layer thickness is further reduced, the deviation in the middle of the layer is enhanced by stronger
interference of the approaching peaks. For thicknessesh < 2R we observe consistent and substantial
mismatches between the 1D approach and finite difference responses. It is clear that formula (5.2) is
no longer valid within the layer and thus equation (5.1) does not represent a tube-wave velocity inside
the bed with very close boundaries. We can interpret that that ”effective” tube-wave velocity inside
the thin layer is altered and is no longer described by (5.1), thus leading to a mismatch. Presence of
multiple closely spaced geological interfaces between contrasting beds can break the approximations
(5.2) and (5.1) in a larger depth interval. Therefore 1D wavenumber approach can not be applied to
the case of very thin layers(h < 2R).

6 Conclusions

We extended 1D effective wavenumber approach to treat the interactions of low-frequency tube waves
with various borehole structures in a radially inhomogeneous media that supports single tube-wave
mode. In particular, we have shown good agreement between responses obtained with 1D approach
and finite-difference computations in cased boreholes with vertical variation in properties of casing
or formation layers. We further tested this method for simplest model of idealized (disk-shaped)
perforation with no-flow boundary at the sand face. In this case change in diameter is additionally
introduced. We also demonstrate that 1D approach becomes inaccurate for very thin layers(h < 2R)
and thus very thin layers or small perforations can not be treated properly. We predict that in case
of poroelastic structures 1D effective wavenumber approach would also account for fluid flow effects
and correctly describe tube-wave interaction with radially inhomogeneous permeable formations.
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P-wave velocity (m/s) S-wave velocity (m/s) Density (kg/m3)
Elastic half-spaces 3500 2500 3400

Casing 1 (steel) 6000 3000 7000
Casing 2 (plastic) 2840 1480 1200

Fluid 1500 - 1000
Layer 1 3100 1800 2600
Layer 2 3700 2400 3000

Corroded region 1 1200 600 1400
Corroded region 2 3000 1500 3500
Corroded region 3 4200 2100 4900

Table 1: material parameters
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