
Dimension-adaptive Sparse Grids

Jörg Blank

April 16, 2008

Abstract

In many situations it is often necessary to compute high dimensional integrals.
Due to the curse of dimensionality naive methods are not viable. In this paper
a method to solve this problem is proposed. Using datamining as an example,
dimension-adaptive Sparse Grids are introduced.

1 Data Mining
Data mining influences every aspect of our live. Large amounts of data are gathered
every minute and new techniques are needed to cope with. One special aspect is the
recovery of a lost function from measurements. We define a dataset as

S = {(xi, yi) ∈ Rd × R}Mi=1

with S being a d-dimensional dataset with M entries. It is possible to restrict yi to a
arbitiary number of classes. That leads to classification. We now assume that the data
points are evaluations of an unkown function y = f(x1, x2, . . . , xd), possibly with
measurement errors. f should be taken from a arbitiary function space V over Rd.

1.1 Regularisation
Now we want to recover f as good as possible. There should be a f such that it min-
imises a functional R.

min
f∈V

R(f)

We define this functional as:

R(f) =
1
M

M∑
i=1

Ψ(f(xi), yi) + λΦ(f)

For the next step we have to choose our function space. We confine V to a discrete
space VN . Functions in this space can be written as:

fN =
N∑

j=1

αjφj(x)

φj denotes the base functions and αj the weights we are interested in. We still have to
chose which base functions we want to use and this choice has a major impact on the
viability of a method. A naive choice will generate points in the size of O(nd), which

1

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5

Figure 1: Function reconstruction

becomes impossible to compute very fast. By using a function Φ(f) to regularise our
expression, we can be sure, that there is only one solution. We can now aquire the
minimum by differentating after αk with k ∈ {1 . . . N}.

N∑
j=1

αj

[
Mλ(∇ϕj ,∇ϕk)L2 +

M∑
i=1

ϕj(xi) · ϕk(xi)

]
=

M∑
i=1

yiϕk(xi)

For the full calculation refer to [3]. This is a system of linear equations and can be
written in a shorter matrix form.

(λC +B ·BT)α = By

The system is symmetric and positiv definite and can be solved by a standard solver
like Conjugated Gradients method.

2 Sparse Grids

2.1 Introduction
As mentioned is the choice of the basis functions a major contributor to the success
of a method. Using a naive approach like a nodal basis leads to a grid of size O(nd).
Instead we just use grids with less grid points. We have to define a base function first.
One of the easiest is the hat function.

φ(x) =

{
1− |x| if x ∈ [−1, 1]
0 otherwise

We can easily apply proper scaling for a given level l and an index i describing the
position:

φl,i(x) = φ(
x− i · hl

hl
) = φ(

x− i · 2−l

2−l
) = φ(x · 2l − i)

Now we can construct an hierarchical basis as seen in figure 2. In a next step we take

2

Figure 2: Datamining mit Dünnen Gittern, Pflüger

Figure 3: a 2-dimensional pagoda. AWR2, Bungartz

the d-dimensional tensor product of our scaled hat function and extend it to a pagoda
form.

φl,i(x) :=
d∏

j=1

φlj .ij
(xj)

After extending the hierarchical pattern into higher dimensions we get the structure
shown in figure 4. Now it is possible to chose grid points with large contribution to the
solution. It can be shown that the right choices in figure 5 is optimal. Such grids only
consist of O(n ∗ log(n)d−1) points.

3 Combination technique
Working directly on Sparse Grids requires a lot of overhead. It is however possible
to use several smaller regular grids and combine them to get a Sparse Grid. For non-
adaptive Sparse Grids we can exploit combinatorial ’inclusion-exclusion’ principle to
get a general formula[1]:

f (c)
n (x) :=

d−1∑
q=0

(−1)q

(
d− 1
q

) ∑
|l|1=n−q

fl(x)

Using the combination technique has several advantages. Existing codes can be
used to calculate a solution for the smaller regular grids. It is also very easy to paral-
lelize because each of the subgrids can be computed without any communication. The
major disadvantage is, that only regular Sparse Grids can be created.

3

Figure 4: subgrid pattern. AWR2, Bungartz

Figure 5: subgrid choices

Figure 6: combination technique. AWR2, Bungartz

4

3.1 Admissibility
We do not want to allow all subspace combination. Instead we require all combinations
to be admissible[2]. We define I as the set of selected indices. I should now fullfill:

• k ∈ I

• j ≤ k ⇒ j ∈ I

3.2 Adaptivity
After defining the smallest grid as 1 = (1, . . . , 1), we can now add new grid points.
This points must remain admissible and must provide a large contribution to the solu-
tion. The contribution can be measured by calculation ε = R(f) without the regular-
isation term. A large ε is a sign for a bad fitting. Generally it is wise to refine in that
direction.

3.3 Algorithm
This leads to the following algorithm:

• Initizalize index set I = {1}

• Initizalize old index set O = {}

• Solve problem on 1

• while global ε > bound

– Choose i ∈ I with largest εi

– Refine in all dimensions, if admissible in O
– Move i to O
– Calculate problems and ε on new indexes
– Update global ε

Figure 7 shows which refinement steps are allowed and which are forbidden.

3.4 Conclusion
Combination Sparse Grids are a easy to implement solution, because old codes can
be reused. The technique requires grid points on the border, which easily becomes
unbearable in higher dimensions. This can be eased using dimension-adaptive Sparse
Grids, especially when working with additive functions like f(x) = f1(x1)+f2(x2)+
. . .+ fd(xd).

References
[1] J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing,

67(3):225–253, 2001.

[2] M. Hegland. Adaptive sparse grids.

[3] Dirk Pflüger. Data mining mit dünnen gittern. Diplomarbeit, IPVS, Universität
Stuttgart, March 2005.

5

Figure 7: dimension-adaptive algorithm

6

	Data Mining
	Regularisation

	Sparse Grids
	Introduction

	Combination technique
	Admissibility
	Adaptivity
	Algorithm
	Conclusion

