
Time Integration Methods for the Heat Equation

Tobias Köppl - JASS March 2008

Heat Equation:

∂tu−∆u = 0

Preface

This paper is a short summary of my talk about the topic: Time Integration Me-
thods for the Heat Equation, I gave at the Euler Institute in Saint Petersburg.
The goal of this talk was �rst to present Time integration methods for ordinary di�eren-
tial equations and then to apply them to the Heat Equation after the discretization of
the Laplacian operator.
Moreover accuracy of the Time integration methods and stability conditions for our
algorithms were discussed.
The picture above shows the solution of the Heat Equation at a certain time on the unit
square, in which the solution of the Heat Equation was said to be zero at the boundary
of the unit square.
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1. Time Integration Methods

1.1. Implicit and explicit Onestep Methods

Before we talk about solution methods for the Heat Equation, we want to con-
struct solution methods for ordinary di�erential equations (ODE). So for the moment
our goal is to �nd numerical approximations of functions x ∈ C1([t0, T ], Rd), which are
solutions of an initial value problem (IVP):

d

dt
x(t) = f(t, x)

x(t0) = x0

x0 is a vector in Rd, f ist a smooth function, which maps from [t0,∞)× Rd into Rd.

The �rst step for the construction of an numerical solution method for ODE is to
divide the continous intervall [t0, T ] by n + 1 discrete timepoints:

t0 < t1 < ...tn = T

This set of timepoints forms a grid ∆ on [t0, T ]: ∆ = {t0, t1, ..., tn}

For further discussions it is useful to de�ne the expression stepsize of an grid. The
stepsize τ∆ of our Grid ∆ is de�ned as: τ∆ := max{τj = tj+1 − tj|0 ≤ j < n}.

Now we want to approximate the solution of the IVP at the gridpoints tj by a gridfunction
x∆ : ∆ → Rd. So x∆ should full�ll the following: x∆(t) ≈ x(t) for all t ∈ ∆.

In additon to that it should be possible to compute a certain value x∆(tj+1) by recursion,
using only x∆(tj). Such Time Integration Methods are called Onestep Methods.

x∆(t0) → x∆(t1) → ... → x∆(tn)

Of course one does not need to use only x∆(tj) in order to compute x∆(tj+1), but one can
also use several values of the gridfunctions, which were computed in former steps (See
literature e.g. [DB II]).
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Two popular Onestep Methods are the explicit and the implicit Euler Method:

x∆(t0) = x0

explicit EulerMethod :

x∆(tj+1) = x∆(tj) + τjf(tj, x∆(tj))

implicit EulerMethod :

x∆(tj+1) = x∆(tj) + τjf(tj+1, x∆(tj+1))

Considering this two Onestep Methods, it becomes clear, why it is necessary to distin-
guish between implicit and explicit Onestep Methods. Using the explicit Euler Method,
x∆(tj+1) can be computed directly. But if you use the implicit Euler Method, x∆(tj+1)
can in general only be computed by the solution of an in general non linear equation.
Now one may ask why implicit Onestep Methods are considered at all, because of the
computional e�ort, which is required in order to solve the mentioned equation. The
answer is given in the next section, in which the convergence theory of Onestep Methods
is treated.

1.2. Convergence theory for Onestep Methods

In this section our goal is to derive conditions under which a Onestep Method converges
towards the exact solution of a given IVP. But before we can treat this problem in detail,
we �rst have do de�ne several expressions, which help us to set up our convergence
theorem.

De�nition (local discretization error)
The local discretization error l(∆) of a grid function x∆ : ∆ → Rd for a grid ∆ on
the intervall [t0, T ] is de�ned as:

l(∆) = max{
∣∣x∆(tj+1)− x(j)(tj+1)

∣∣}
0 ≤ j < n

x(j) ist the solution of the IVP:
d

dt
x(t) = f(t, x)

x(tj) = x∆(tj)

De�nition
A Onestep Method is called consistent, if: l(∆) → 0 for τ∆ → 0

Theorem
The explicit and the implicit Euler Method are consistent.

Proof: See e.g. [DB II] Chapter 4.
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De�nition (global discretization error)
The global discretization error e(∆) is the maximum error between the computed
approximations x∆(tj) and the corresponding values of the exact solution x(tj).

e(∆) = max{|x∆(tj+1)− x(tj+1)|}

0 ≤ j < n

De�nition (convergence)
A Onestep Method is called convergent towards the exact solution on an IVP, if:
e(∆) → 0 for τ∆ → 0

The following graph helps us to get a better imagination of the local and the glo-
bal discretization error:

Now we have all the expressions, which are necessary to formulate our convergence
theorem.

Maintheorem of Numerics
A Onestep Method is called convergent if and only if it is consistent.

Now we know the condition under which our Onestep Method is convergent. But
the above Theorem is only ture, if we can chose an arbitrary small stepsize. The problem
is that we can not choose an in�nitly small stepsize for our computations with the help
of a computer. In addition to the Maintheorem of Numerics our algorithm has to have
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a further property called stability, in order to achieve good numerical results with an
acceptable small stepsize.

De�nition (stability)
A numerical algorithm is called stable, if for all permitted input data perturbed in the
size of computional accuracy O(ε) acceptable results are produced under the in�uence of
rounding and method errors.

Example
If we apply the implicit and the explicit Euler Method to the following IVP (Dahlquist's
testequation):

d

dt
x(t) = λx(t)

x(0) = 1, λ ∈ R
one gets the following result:

Example
The implicit Euler Method is stable for any stepsize τ∆.
The explicit Euler Method is only stable, if τ∆ ≤

∣∣ 2
λ

∣∣.
2. The Heat Equation

2.1. Discretization of the Laplacian operator

Before we can solve the Heat Equation, we have to think about solution methods
for the Poisson equation (PE), for simplicity we consider only the two dimensional case:

−∆u = f

Ω = [0, 1]2, u|∂Ω = 0

f : Ω → R

In order to solve the Poission equation, we transfer the partial di�erential equation into a
system of linear equations. Here we replace di�erential operators by di�erence operators
and discretize our domain Ω by an uniform grid with gridparameter h. h is the distance
between two neighboured nodes of the grid in x- or y-direction. Thus we have the following
discretization points:

(xi, yj) ∈ Ω

xi = ih, yj = jh

0 ≤ i, j ≤ 1

h

5



The picture below shows some possible discretizations or our domain Ω by an uni-
form grid.

Before we discretize the twodimensional Laplacian operator, we have to introduce some
notation:

ui,j = u(xi, yj) (xi, yj) is an interior point of Ω.
fi,j = f(xi, yj)

The next step is to expand u(xi + h, yj) and u(xi − h, yj) into a Taylor series up
to order 4 around xi = ih.

Furthermore one needs to expand u(xi, yj + h) and u(xi, yj − h) into a Taylor se-
ries up to order 4 around yj = jh.

After that we add the Taylor series of u(xi + h, yj) and u(xi − h, yj) and we get
an new equation. Next we solve this equation for the second derivative with respect to x
and get:

∂xxu(xi, yj) = 1
h2 (u(xi + h, yj)− 2u(xi, yj) + u(xi − h, yj)) + O(h4)

Then one has to do the same with u(xi, yj + h) and u(xi, yj − h) and gets:
∂yyu(xi, yj) = 1

h2 (u(xi, yj + h)− 2u(xi, yj) + u(xi, yj − h)) + O(h4)

If you neglect the term O(h4), you get the following expression of the twodimen-
sional Laplacian operator:

−∆ui,j ≈
1

h2
(4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1)

The Discretization error is in the order of O(h4).
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In order to get a numerical solution of the Poisson equation on each gridpoint, one
has to solve the following system of linear equations:

1

h2
(−4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = −fi,j

0 ≤ i, j ≤ 1

h

Matrix-Vector notation:
Au = −f

A has the following structure:

It can be easily seen that A is a sparse matrix, thus one should use fast iterative
solvers, in order to solve the system of linear equations, which is given above.

2.2. Application of Time Integration Methods

In this section our goal is to �nd numerical approximations of functions u, solving
the homogenous Heat Equation:

∂tu−∆u = 0

Ω = [0, 1]2, u|∂Ω = 0

g : (0, 1)2 → R, u(0, x) = g(x)

t ∈ [t0, T ]

It is clear that the solution of the Heat Equation depends on space and time. Thus
discretization of time and space is necessary in order to get a discrete system of linear
equations.
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Both time and space can be discretized by an uniform grid, as it can be seen in
the picture below:

We can discretize our unit square Ω again by an uniform grid with gridparameter
h.
This yields the same discretizations points as in section 2.1.:

(xi, yj) ∈ Ω

xi = ih, yj = jh

0 ≤ i, j ≤ 1

h

Moreover we discretize the intervall [t0, T ] by an onedimensional grid with stepsize k and
n discrete timepoints:

tm = km, 0 ≤ m < n

We denote u(tm, xi, yj) with: um,i,j

Now one can take care about the construction of an solver of the Heat Equati-
on:

∂tu−∆u = 0 ⇔ ∂tu = ∆u

The next step is to construct local initial value problems for every interior point (xi, yj)
0 ≤ i, j ≤ 1

h
(IVP(ij)):

d

dt
u(t, xi, yj) = ∆u(t, xi, yj)

u(0, xi, yj) = g(xi, yj)

t ∈ [t0, T ]

IVP(ij) can be solved for example by the implicit Euler Method. Applying the implicit
Euler Method to IVP(ij), we get the following formula:

u0,i,j = g(xi, yj)

um+1,i,j = um,i,j + k∆um+1,i,j
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After that we insert the discretization of the two dimensional Laplacian operator:

−∆um+1,i,j ≈
1

h2
(4um+1,i,j − um+1,i+1,j − um+1,i−1,j − um+1,i,j+1 − um+1,i,j−1)

and this yields the following system of linear equations, whích is to be solved in every
timestep, for example by a fast iterative solver (Jacobi Method, Gauss-Seidel Method):

(4 +
h2

k
)um+1,i,j + um+1,i+1,j + um+1,i−1,j + um+1,i,j+1 + um+1,i,j−1 =

h2

k
um,i,j

0 ≤ i, j ≤ 1

h
0 ≤ m < n

2.3. Courant-Friedrichs-Levy condition

IVP(i,j) can also be solved by the explicit Euler Method. But remember: In secti-
on 1.2. we realized that the explicit Euler Method is only stable for small stepsizes k.
We also know that stability is an essential condition for getting qualitatively correct
solutions, when using practical stepsizes.

In 1928 Courant, Friedrichs and Levy found a condition under which the explicit
Euler Method is a stable solver for the Heat Equation:

Theorem(CFL - condition)
The explicit Euler Method is a stable solver for the Heat Equation, if:∣∣∣∣4 k

h2

∣∣∣∣ < 1
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3. Outlook

Let x(t) be a solution of an IVP. It is clear, that an uniform discretization of the
time axis would lead to a slow convergence. Thus adaptive algorithms with a good
errormeasurement are required in order to get a better convergence.
Further things, that would improve our numerical algorithm would be the optimization of
the algorithms solving the sparse linear system of equations, with respect to storage and
number of �oating point operations, constructing an algorithm, which helps us to traverse
our grid e�ciently (peano curves) or the preconditioning of the Matrix representing the
system of linear equations.
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