
St. Petersburg / Munich JASS 2008 March 2008

Hoare Calculation and its Application

Group 2: From Models to Software

Robert Lang TUM

Abstract. Modern software uses lots of new and groundbreaking algorithms to handle with more and

more complicated tasks in less and less time. These algorithms are high e�cient, but also hard to under-

stand in their stucture. Most of the time you are interested in ensuring absolutely the correctness of the

program and its algorithms. Especially for safety critical application as you can �nd in medical science,

aerospace industry or military, this insurance is one of the most important aspects in developing software

solutions. The Hoare Calculation allows to meet that challenge and to prove the correctness of algorithms

or to �nd errors in software and to �x them.

1 Hoare Rules

1.1 C.A.R. Hoare1

Sir Charles Anthony Hoare was born on 11. January 1934 Colombo, Sri Lanka. He studied at Oxford

and at Moscow State University computer translation of human languages. Hoare is known for the deve-

lopment of Quicksort (Hoaresort) in 1960 and the Hoare Logic (or Hoare Calculation). His programming

model Communicating Sequential Processes (CSP), a formal language, a�ected signi�cantly the engine

of the languages Ada and Occam. Today Hoare is Emeritus Professor at Oxford and senior researcher at

Microsoft Resarch in Cambridge. The picture2 was made in 2005.

�I conclude that there are two ways of constructing a software design: One way is to

make it so simple that there are obviously no de�ciencies and the other way is to make it so

complicated that there are no obvious de�ciencies.� Tony Hoare

1Reference [W1]
2Reference [W2]

1

1.2 Hoare Triple3

A central concept in Hoare Calculation is the Hoare Triple

{P} S {Q}.

P and Q are predicates4 with values true or false. S is a statement, a program with correct syntax.

Hoare Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔ If the predicate {P} is true immediately before execution of S, then immediately

S has terminated, the predicate {Q} is true.

For an e�cient way of notation the the following symbol is introduced: XY :⇔ X ⇒ Y

1.3 The six Hoare Rules5

In the following the Hoare Rules are listed as a Hoare Triple. If there is true in the nominator, then there

are no preconditions to the assertion. Mind that sometimes in literature the order of the Hoare Rules can

di�er.

1. Skip-Axiom:
true

{A} skip {A}

Here skip means the program with no commands.

2. Axiom of Assignment:
true

{Aβ/x} x := β {A}

Aβ/x is predicate A, but x instead of β.

3. Rule of Composition:
{A} S1 {B} ∧ {B} S2 {C}

{A} S1,S2 {C}

4. Rule of Conditional Branching:

{A ∧ B} S1 {Q} ∧ {A ∧ ¬B} S2 {Q}
{A} if B then S1 else S2 end if {Q}

5. Rule of Iteration:
{I ∧ B} S {I}

{I} while B loop S end loop {I ∧ ¬B}

Such an I is called loop-invariant.

6. Rule of Consequence:
A ⇒ A' ∧ {A'} S {B'} ∧ B' ⇒ B

{A} S {B}
3Reference [Cl]
4Reference [Gel]
5Reference [Hei]

2

2 Verifying the correctness of software

A very simple problem in software design is to add two non-negative integers x and y. There are several

programs to solve this problem. In the following two di�erent algorithms are discussed.

2.1 A �rst example

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

The program should answer the sum of two non-negative integers x and y. In the case of result(x,y)

the proof of its correctness is quite easy: Proof of the assertion by induction on x.

Induction top: x = 0 ⇒ result(0,y) =︸︷︷︸
x==0

y, and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.

⇒ result(x+1,y) =︸︷︷︸
else

result(x,y+1) =︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y 2

It is interesting that in the proof the fact that y is a non-negative integer isn't used at all. So the

proof shows that for all non-negative integers x and also for all real numbers y the program result(x,y)

answers the sum of x and y; of course considering the computational accuracy. In the case of result(x,y)

the correctness could be proved without Hoare Calculation but only with a proof method which is well-

known for all mathematicians. This is because of the recursive structure of the algorithm. For this and

similar cases the method of induction is a very useful tool for veri�cation.

2.2 A second example

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

The second program uses a while-loop instead of recursive runs. This program is not result of an functional

program, but of an iterative one. It is not possible to prove the correctness of result_2(x,y) using

induction on x like in the proof before, because there's no way to use the induction hypothese. Here the

Hoare Rules must be applied. In the following the Rule of Composition is used without saying it explicitly.

3

2.2.1 Additional lines

The Hoare Rules are listed as Hoare Triples. For their use lines must be added to the programming code

to check the preconditions of the Hoare Triples.

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}

{I}

while x > 0

{I ∧ B}

{Item 1}

x = x-1;

{Item 2}

y = y+1;

{I}

end

{I ∧ ¬ B}

{Q: y = r}

return y;

Of course the predicate B is given by the condition of the while-loop: x > 0. As long as this predicate is
true, the programming code in the while-loop is running. The loop-invariant I is given by the predicate

I : r = x + y.

At the beginning I is true by de�nition, but during the execution x and y change, so this statement is

not a trivial statement and must be proved.

2.2.2 The while-loop

In the while-loop Item 2 is, using the Rule of Assignment, given by

Item2 : {x + (y + 1), x ≥ 0}.

Again using the Rule of Assignment, the Item 1 is given by

Item1 : {(x− 1) + (y + 1), x− 1 ≥ 0}.

The question is if Item 1 is the same predicate as the �rst predicate in the while-loop

{I : x + y ∧ B : x > 0}.

In fact they are the same, because

x− 1 ≥ 0 ⇔ x > 0

4

for a non-negative integer x. The down-to-up direction of assignment is a typical way in Hoare Calculation.

All in all a proof using Hoare Calculation must work from up to down, because this is the direction of

program execution.

2.2.3 The answer

After the while-loop, the Rule of Iteration says, that the predicate {I ∧ ¬B} is true. So the last task is

to show that {Q :y = r} is true. This is clear, because {P : x ≥ 0 ∧ y ≥ 0} and ¬(x > 0), so x = 0. But
this means that {Q : y = y + x = r}, because of the loop-invariant {I : r = x + y}. Then the program

returns the latest value of y , so result_2(x,y) answers the sum of x and y. 2

3 Further application in modern software6

One big task for numerical mathematics is numerical quadrature. That means the approximation of the

functional

F (f, a, b) :=
∫ b

a

f(x) dx

for a su�ciently smooth function f : [a, b] → R (e.g. f ∈ C2). There are many di�erent ways to calculate

an approximation, for example using the Newton-Cotes formulas7. The 2-point closed Newton-Cotes

formula is known as the Trapezodial-Rule. If the interval [a, b] is divided by n grid points into n + 1
equidistant intervals, then the Trapezodial-Rule in sum is given by

F ≈ TS :=
b− a

n + 1
·

[
f(a)

2
+

n∑
k=1

f(xk) +
f(b)
2

]
.

For high-dimensional functions f , the use of the generalized Trapezodial-Rule is quite hard to calculate

and not e�cient at all. To handle with those functions the method of Hierachical Decomposition is a

good approach.

3.1 Hierachical Decomposition

The �rst step in Hierachical Decomposition is again the Trapezodial-Rule with n = 0.

F (f, a, b) ≈ T (f, a, b) = (b− a) · f(a) + f(b)
2

6Reference [BaZi], [Ker]
7Reference [MW]

5

So the functional F is approximated by the area of a trapezoid and there is a residuum S:

F (f, a, b) = T (f, a, b) + S(f, a, b)

The idea now is to decompose the residuum S into a triangle D with projected high

h = f

(
a + b

2

)
− f(a) + f(b)

2
.

It is easy to calculate the area of D using the projected high. So the residuum S can be approximated,

but there is a new residuum given by S′(f, a, b) = S(f, a, b) − D(f, a, b). This new residuum can be

approximated by using that idea of decomposition recursively. Of course the arguments of the residuum

function S change:

S(f, a, b) = D(f, a, b) + S(f, a,
a + b

2
) + S(f,

a + b

2
, b)

3.2 Approximation via basis functions

3.2.1 Basis functions

If u : [a, b] → R is an approximation to f , then

F (f, a, b) ≈ F (u, a, b).

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Then it is clear that the functional F is approximated by a linear combination of integrals:

F (f, a, b) ≈
N∑

k=1

αk

∫ b

a

Φk(x)

This is only helpful for computing if the integrals can be calculated very easily. To ensure this the Φk(x)
are de�ned as �hat functions�. Consider that the index k is a double index n, i:

Φn,i = Φ
(

x− xn,i

hn

)

6

In this de�nition the function Φ(x) is given by

Φ(x) := max{1− |x|, 0}.

hn mean the mesh size hn := 2−n and xn,i mean the grid points xn,i = i · hn.

3.2.2 Generator system and basis

Let VN be the space of the continuous, on grid hn piecewise linear functions u : [0, 1] → R with

u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but unfortunately for N > 1 not a basis). Hence, instead of ΨN it is better

to use the hierachical basis

ΨH
N :=

N⋃
n=1

{Φn,i : 1 ≤ i < 2n | i odd} .

The picture shows all seven elements of the hierachical basis of V3.

The task of software using the hierachical basis is to convert the approximating vector v ∈ VN with

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i(x)

into the hierachical basis

v(x) =
N∑

n=1

2n−1∑
i=1

α′
n,iΦn,i(x)

with α′
n,i = 0 for all even i.

3.3 Why using the hierachical basis?

The use of the hierachical basis has some advantages in comparison to other methods: During the running

time an adaptive stop criterion via the projected high is calculated instantly: If the coe�cient αn,i is

smaller than a given ε, then the deepest iteration of the hierachical basis is reached. It is interesting

that then the global error ∆F can be estimated by ∆F ≤ ε(b − a). Furthermore the conversion of the

approximation into the hierachical basis leads to a high e�cient algorithm for numerical quadrature.

7

Particulary for functions in high dimensions this is a very good approach. For a d-dimensional function

the memory requirements M ∝ Nd (N = dim VN). In comparison with the hierachical basis it can be

showed that M ∝ N · (lnN)d−1. Getting such an e�ectiveness must be paid with a very complicated

and opaque programming code. Here the methods of the Hoare Calculation can be used to verify the

correctness of the coe�cients' conversion.

4 References

[BaZi] Michael Bader, Stefan Zimmer: Hierarchische Zerlegung (eindimensional)

[Cl] Volker Claus: Einführung in die Informatik 2005/06 - Kapitel 7: Semantik von Programmen

[Gel] Michael Gellner: Der Umgang mit dem Hoare-Kalkül zur Programmverik�kation

[Hei] Peter Heinig: Program Veri�cation using Hoare Logic - An Introduction

[Ker] Samuel Kerschbaumer: The Hoare Logic - Providing Numerical Algorithms (2006)

[MW] Wolfram MathWorld: http://mathworld.wolfram.com/Newton-CotesFormulas.html

[W1] Wikipedia: http://en.wikipedia.org/wiki/C._A._R._Hoare

[W2] Wikipedia, the free encyclopidea: http://en.wikipedia.org/wiki/Image:CAR_Hoare.jpg

8

	Hoare Rules
	C.A.R. HoareReference [W1]
	Hoare TripleReference [Cl]
	The six Hoare RulesReference [Hei]

	Verifying the correctness of software
	A first example
	A second example
	Additional lines
	The while-loop
	The answer

	Further application in modern softwareReference [BaZi], [Ker]
	Hierachical Decomposition
	Approximation via basis functions
	Basis functions
	Generator system and basis

	Why using the hierachical basis?

	References

