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Abstract

This work is about the wave transmission in the tube which situated in the homogeneous elastic
space (fig.1). The tube is filled with non-viscous water and it intersects with the quite thin fracture.
What does it mean ”thin” I’ll say later. In the tube or borehole the wave can exists. It is called Stoneley
wave. In particular I focused on the reflection phenomena arising when Stoneley wave transmits in the
tube and encounters the fracture intersecting borehole. Part of wave energy is reflected, part passes
the fracture and another part transforms into a mode that propagates outward into the fracture (fig.1).
When you have real borehole for the oil production, the geological formation in which you have made

Figure 1: The model

the borehole can have fractures in it. And such fractures because of their duration in the formation
can be used for transporting oil from the place where it is to the borehole to be pumped out. So such
parameter as the effective fracture width is important to be known or at least to be estimated to have
more information about the productivity of the borehole.

Sometimes another situation occurs: there are predictions that the formation is so layered, that
fracture existence is possible. For example, may be some time ago there were borehole with fractures
and you produced oil with the help of them well, but they have closed in the power of some geological
reasons. And you want to continue the business. So you pump in the fracture the water under the high
pressure and after it fracture appears again. And again in this case it is useful to have information
about fracture dimensions for estimating productivity and for other technical reasons. How can we get
it? With the help of reflection coefficient of the tube wave! Imagine the source of the acoustic wave
(fig.1) in the borehole. This source sends the signal with not very high amplitude (if the amplitude will
be quite high, it is the possibility then appears to break the borehole). If there are any fractures you
will receive the reflected signal. From this signal it is possible to get information about the effective
width of the fracture. And, of course, if you have the analytical model of described situation you
would facilitate enough the determination of the effective fracture width.

I consider the analytical model which can interpret the tube wave reflections from fractures, then I
calculate formulae for the reflection and transmission coefficients of the tube wave. Finally, I compare
the results of analytical calculations with the results of the finite-difference (FD) modeling.
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The model

Figure 2: The model

There is the same picture (fig.2). But all waves are denoted by the letter P because they are pressure
waves. P1 is incident wave, P2 is reflected wave, Player is guided wave in the fracture, PII is transmitted
wave. I assume that the fracture is perpendicular to the borehole axis and parameters a - the borehole
radius and h - the effective fracture width are both smaller than the characteristic wavelength in the tube:
a << λTW = VT W

ν , h << λTW = VT W

ν . So the frequency ν should be low enough. I will consider range of
frequencies from 0 to 2000 Hz. The Stoneley wave in the tube can be approximated by a tube wave with
uniform pressure distribution across the borehole (fig.3) at low frequencies and on some distances from
the source.

Figure 3: Pressure distribution in the tube

I introduce coordinate axes r and z with the fracture location at z=0 then waves can be expressed by
formulae. I assume that the source signal is harmonic and can be presented in the form of Fourier integral
(it should be real, because the signal is real):

f(t) =
1
2π

∫ +∞

−∞
f(ω)eiωtdω = <

(
1
π

∫ +∞

0

f(ω)eiωtdω

)
. (1)

Then the wave fields in the frequency domain are defined by:

PI = P1 + P2 = e−ikT z + R(ω)eikT z (2)
PII = T (ω)e−ikT z (3)

Player = Q(ω)H2
0 (krr), (4)

where R(ω) is reflection coefficient of the tube wave, T (ω) is transmission coefficient of the tube wave,
Q(ω) is so called guided wave’s coefficient. The wave numbers of the tube wave kT = ω

VT W
and the
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wave number of the guided wave is kr = ω
VGW

. Wave numbers are expressed as cyclic frequency divided
by velocities. Velocity of the tube wave depends on the elastic parameters of the fluid in the tube and
surrounding elastic medium and can be obtained for the low frequency domain by:

VTW =

(
1

V 2
f

+
ρf

ρsV 2
s

)− 1
2

, (5)

where Vf is velocity of the longitudinal wave in the fluid filled the tube, ρf is density of this fluid, ρs is
density of the elastic space, Vs is transverse wave velocity in the elastic space.

The pressure in the fracture is the pressure of such called guided wave and it is expressed through
Hankel function.

Symmetrical guided wave in the fracture

At first notice that guided wave is axial symmetrical relative to the borehole cylinder’s axis. We solve
the wave equation:

∆p =
1

V 2
GW

∂2p

∂t2
. (6)

With the help of Fourier time transformation (1) turn our equation to the spectrum domain. Now it is
the Helmholtz equation:

∆P +
ω2

V 2
GW

P = 0. (7)

We should solve it in the cylindrical coordinates, which in our consideration are polar so the Laplacian
operator will have only two parts:

∆ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2
≡ ∂2

∂r2
+

1
r

∂

∂r
. (8)

Then (7) becomes the Bessel equation of zero order (9). It has solutions of Bessel and Neiman functions
of the zero order.

∂2P

∂r2
+

1
r

∂

∂r
P +

ω2

V 2
GW

P = 0 (9)

P = CH
(2)
0

(
ω

VGW
r

)
r→+∞−→ Ce

−i ω
VGW

r (10)

We choose their linear combination which is usually called Hankel function. Why have we chosen Hankel
function of second type and not first?! Look at its asymptotic when r is infinite (10). According to
previously chosen sign of the time Fourier (1), solution of the Bessel equation describes outgoing wave
only if it has form of (10):

p(t) =
1
2π

∫ +∞

−∞
P (ω)eiωtdω ∼ Ce

−i ω
VGW

r
eiωt (11)

So we have the form of answer for the guided wave in the fracture (10). The magnitudes for velocity
of this wave VGW can be obtained from the dispersion equation for the slab of fluid bounded on each side
by a semi-infinite elastic medium.

The equations for coefficients

It is necessary now to have the system of the equations to obtain frequency-dependent functions of
coefficients. First equation is the equation of the pressure continuity at z=0 or at the whole volume of this
small cylinder - see (2),(3),(4) and fig.4 and fig.5. The pressure is uniform in this region where fracture
intersects the borehole because of the long-wavelength approximation which we have assumed. So now we
have the first equation to obtain R(ω) and T (ω):

1 + R(ω) = T (ω) = Q(ω)H2
0 (kra) (12)
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Figure 4: 2D model’s cut

Figure 5: Cylinder

Q(ω) we express through R(ω) and T (ω), because (12) includes two equations inside itself.
The second equation is the equation of the continuity of fluid flux through the cylinder (fig.5):

div
−→
V = 0 (13)

Integrate this equation by the volume of ”cylinder”, use Ostrogradskiy-Gauss theorem and obtain:∫
U

div
−→
V dU = 0 =

∫
S

(−→
V ,−→n ex

)
dS = −

∫
S

(−→
V ,−→n in

)
dS, (14)

where U is the cylinders’ volume and S is the area of the cylinder’s surface. I choose the internal normal
vector for next calculations ∫

S

(−→
V ,−→n in

)
dS = 0, (15)

because the directions of this normal vector and the incident wave are the same (fig.4 and fig.5).
According to the choice of the normal, this vector equation (15) transforms to the scalar sum

πa2 (VI − VII)− 2πahVlayer = 0, (16)

where πa2 and 2πah are areas of the cylinder base and lateral area, also there are absolute values of the
wave velocities, and

VI = |
−→
V I | = |

−→
V 1 +

−→
V 2|. (17)

Now we have to connect wave pressures which we have in the initial equations (2),(3),(4) with the
velocities from (16). I use the Euler equation for non-viscous ideal fluid:

ρf
d−→v (t)

dt
= −

−−→
grad p(t). (18)

And if we express both pressure and velocity in the Fourier integral (1), we obtain:
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−→
V (ω) = −

−−→
gradP (ω)

iωρf
. (19)

Finally we have system of equations (16) and (12):

{
πa2 (VI − VII)− 2πahVlayer = 0
1 + R(ω) = T (ω) = Q(ω)H2

0 (kra) (20)

The first equation here was obtained from the continuity of the flux, velocities can be obtained from the
Euler equation (19) with the help of (17). The second equation is the equation of the pressure uniform.
There are two equations and there are two unknowns. Third unknown Q can be expressed through R and
T. After some algebra I obtained next expressions for coefficients:

R =
ihkrH2

1 (kra)

aH2
0 (kra)

kT − ihkrH2
1 (kra)

aH2
0 (kra)

(21)

T =
kT

kT − ihkrH2
1 (kra)

aH2
0 (kra)

(22)

Q =
kT

(kT − ihkrH2
1 (kra)

aH2
0 (kra)

)H2
0 (kra)

(23)

They have frequency dependence through the wave numbers kT and kr:

kT =
ω

VTW
, kr =

ω

VGW
.

And of course, the magnitudes of the tube radius and width of the fracture are the parameters. So the
reflection coefficient depends on the parameter h, and we can estimate its value.

The finite-difference model

And now I consider the finite difference modeling. I am going to describe a little finite difference code
which we use in our laboratory. There is the special file (see some parts of it interface on the fig.6 and
fig.7), where there is the scheme of the model (fig.6), place to fix all coordinates, types of media and their
parameters (fig.7), grid information and some information about data output (you have to fix coordinates
of the receivers and components of the fields). Also there is place there you have to fix type of the source.

It is enough for homogeneous nonporous medium to set the density (”rof”=ρf or ”ros”=ρs), bulk
modulus (”akf”=λ or ”aks”=K) and shear (”amus”=µ) modulus. What is the bulk modulus? It describes
relative modification of the little volume in the media. For non-viscous fluid it is

λ = ρfV 2
f ,

and for elastic medium it is expressed by:

K = λ− 4
3
ρsV

2
s = λ− 4

3
µ.

In the input file of the code each modulus is expressed through the density values and the values of
longitudinal and transverse wave, they are called p (primarily) and s (shear, secondary) waves. I show
their magnitudes in the table below.

Then the grid information is set in the input file. And the very important thing is the inequality for
grid steps, which denoted as ”hrmax” and ”hzmax” according to the each axis:

hrmax <<
λmin

14
, hzmax <<

λmin

14
,

where λmin is the minimum wavelength of all waves which can exist in the model. If inequality doesn’t
true, the results of the computation cannot be good.
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Figure 6: The scheme of the model in the input file

Figure 7: Media parameters

medium Elastic (lay1) Fluid (wtr)
Longitudinal velocity (m/s) 5000 1500

Shear velocity (m/s) 3000 -
Density (kg/m3) 2500 1000

There are some other parameters such as maximum time for calculations and etc. But I think it is no
need to talk about them now and any time you need to use them you can open and use special manual of
this code [2].

The FD seismogram

Computational result of this code can be shown with the help of some special program as the seismogram
(fig.8). The horizontal axis is the axis of receivers. They are situated in the fracture. Vertical axis is the
time axis. Fracture is situated on the depth of 10 m. and the distance from the source is also 10 m. So
z-coordinate of the source is 0 m. The radius of the tube equals 0.1 m and fracture width equals 0.005
m. Incident, reflected and transmitted waves easy to be seen on the seismogram. For the better fields
visualization there is the possibility to change the maximum amplitude which you want to observe on the
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Figure 8: Finite-difference seismogram

seismogram.

Comparison of the FD modeling results with analytic approach

One of the tasks for the work was the comparison of the analytical results with the finite-difference
ones. Analytical results are the reflection and transmission coefficients (21) and (22), which were obtained
above. The analytical seismogram (red) was obtained with use of these coefficients and it is very close
to the finite-difference one (black) - fig.9 and fig.10. Also I made the comparison of the absolute value

Figure 9: FD (black) and analytical (red) seismograms

of reflection coefficient (fig.11). The absolute value of reflection coefficient was obtained from the finite-
difference seismogram by dividing the spectrum of the reflection signal to the spectrum of the incident
signal. And there is the excellent agreement between absolute values of reflection coefficients too (fig.11).
So I verified my analytical calculations for reflection and transmission coefficients of the tube wave in the
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Figure 10: Enlarging of the previous figure

Figure 11: Absolute value of reflection coefficient, h=0.005 m.

long-wavelength approximation. As it was mentioned above, this result can be useful for estimating of the
well productivity and for introducing better understanding of the interaction process between the tube
wave and the fracture.

Another task was to compare absolute values of reflection coefficients calculated analytically and by
finite-difference code for the different models where the width of the fracture changes. I made such
comparison for several models. Medium parameters are set in the table below:

medium Elastic (lay1) Fluid (wtr)
Longitudinal velocity (m/s) 4200 1500

Shear velocity (m/s) 2500 -
Density (kg/m3) 2700 1000

h=0,05 m. (fig.12), h=0,2 m. (fig.13), h=0,4 m. (fig.14), h=3,0 m. (fig.15). In spite of the fact that
conditions of long wavelength approximation h << λTW = VT W

ν not satisfied for some models at some
frequencies (frequency range is 0-2000 Hz, peak frequency is 1000 Hz, VTW ∼ 1400m/s), results are good -
they show good agreement between analytical calculations and finite-difference ones. Only the last fig.15
has the biggest discrepancy of results in compare with all showed pictures; it is predictable. So such
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result of verifying the application of analytic formulae for the wide range of models with different range of
fractures can be useful in the estimating of the well-fracture’s system parameters. And time of analytical
calculations too smaller than the time of finite-difference code’s similar calculations.

Figure 12: Absolute value of reflection coefficient, h=0.05 m.

Figure 13: Absolute value of reflection coefficient, h=0.2 m.
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Figure 14: Absolute value of reflection coefficient, h=0.4 m.

Figure 15: Absolute value of reflection coefficient, h=3.0 m.

Conclusions

• The analytical formulae of the wave coefficients were derived. They showed excellent agreement with
finite-difference modeling

• We can obtain better physical insight into the interaction of the tube wave with the fracture

• We can use analytical formulae for the cases with wide range of models

• It is possible to use obtained formulae for the estimating of the well-fracture system’s parameters and,
consequently, the estimating of the well productivity. It requests too less time than the time of
finite-difference code’s similar calculations.
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