
Production schedules using
timed automata

Report for the joint advanced student school 2008 - Advanced
Methods for intelligent automation and control

Dipl.-Ing.(FH) Inga Krause

Lehrstuhl für
STEUERUNGS- und REGELUNGSTECHNIK

Technische Universität München

Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss
Univ.-Prof. Dr.-Ing. Olaf Stursberg

Coursedirectors: Prof. Dr.-Ing. Olaf Stursberg and Prof. Dr. V.P. Shkodyrev
Tutors: Dipl.-Ing. Tina Paschedag and M. Sc. Hao Ding

2

Contents

1 Introduction to Scheduling 4
1.1 Job-Shop Scheduling . 5
1.2 Timed Automata . 5

1.2.1 Job-Shop Scheduling Modeled by TA 6
1.2.2 Formulation of TA and its Semantics 7
1.2.3 Reachability Analysis and Scheduling for TA 7

2 Concepts of the Algorithm 8
2.1 The Scheduling Algorithm . 8
2.2 Computation of Lower Bounds . 10
2.3 Search Heuristics . 10
2.4 Non-laziness and Immediate Traces 11

3 Algebraic Mixed-Integer Linear Programming Formulation 13
3.1 Algebraic MILP Formulation . 13
3.2 Example of the Algebraic MILP Formulation 14

4 Experimental Results 15
4.1 Test Series . 15
4.2 Techniques for State Space Reduction 16
4.3 Search Strategies . 17
4.4 Test for Benchmark Examples from Literature 18

5 Extensions to More General Scheduling Problems 19

6 Conclusion 21

Bibliography 22

LIST OF FIGURES 3

List of Figures

1.1 Model of two parallel Job-Timed-Automata 6
1.2 Model of twoe parallel Resource-Timed-Automata 6
1.3 Tree Structure for Reachability Analysis 7

2.1 The search algorithm . 9
2.2 Branch-and-Bound Principle . 9
2.3 Structure of the Implementation . 11
2.4 Selection Strategies . 11
2.5 The left schedule is non-immediate, the right one is immediate but lazy 12

3.1 Timed Automata for MILP Formulation 14

4.1 Number of Explored Nodes using Different Techniques for State Space
Reduction . 16

4.2 Number of Explored Nodes using Different Search Strategies 17

4

Chapter 1

Introduction to Scheduling

For processing or manufacturing systems intelligent scheduling algorithms help to
optimize the desired output. A system can be devided into resources and production
steps (operations). The operations require a resource for a specific time. Since there
is a finite number of resources available in a plant, the resources represent a limiting
constraint. It is the task of scheduling to determine in which order operations are
allowed to allocate resources such that the profit is maximized or the cost minimized.
Cost reduction can be achieved for example by either minimizing the makespan
or maximizing the throughoutput of the plant. These cases are useful for cyclic
operation schemes in which the plant should produce as much as possible in a short
period of time. From a hierarchical point of view, the scheduler produces high
level commands to the process which triggers a subordinated sequential controller.
This subordinated controller in turn realizes the resource allocation, the execution
of the operation and eventually the de-allocation of the resource. A variety of
systems like telecommunication systems and real-time operation systems require
scheduling and have been already intensively investigated in the last decades. The
main idea in the scheduling algorithm was to calculate lower cost bounds as a mean
to exclude non-optimal schedules. One approach was solving subproblems with
relaxed integrality constraints by linear programming, for example the mixed-integer
linear programming (MILP) (presented by J. Kalrath [Kal02] and E. Kondili, C.
Pantelides and R. Sargent [EKS93]). Alternatives to the linear programming are
given by constraint programming, genetic algorithms or reachability algorithms for
models given as so called timed automata (TA). TA will be explained in detail
later. They provide an intuitive modular and graphical form by assigning resources
to nodes and having transitions between them. Additional techniques extend the
reachability analysis for TA by the notion of costs and optimal executions and
make the algorithm more efficient also for larger problem instances. S. Panek, O.
Stursberg and S. Engell embeded linear programming in TA in order to obtain lower
cost bounds for partial executions of the TA ([SPE04b] and [SPE04a]). This theory
has been extended by the same authors by further reduction of the solution space
on the fly ([SPS] and [SPE06]). The further reduction is achieved through non-

1.1. JOB-SHOP SCHEDULING 5

lazy executions, the sleep set method and embedded linear programs are updated
iteratively. This latter approach with its components and experimental results will
be mainly explained in this report. But first of the basic concepts of scheduling
which are job-shop scheduling, timed automata with its reachability analysis and
schedule-modelling will be explained.

1.1 Job-Shop Scheduling

The alogrithm which will be presented is designed to solve job-shop scheduling
problems. A typical job-shop problem is defined as follows: a set of operations O is
assigned to a set of Resources R with the function v: O→ R. A mapping d assigns
the duration and the schedule s a start time to each operation O. The mapping κ
assigns operations to jobs with the number of jobs being smaller or equal tne number
of operations. For the following considerations a schedule is considered to be valid
if it satisfies the following requirements:

1. Once an operation has started it has to be executed continuously and cannot
be preempted

2. Once an operation is executed on a resource no other operation can be assigend
to this resource during the operation time

3. κ determines the order of operations within a job and this order cannot be
changed during execution

The scheduler has to determine a schedule which is optimal with respect to a given
cost or profit function. Costs and profits can be assigned to various elements, for
example the operations, the resource utilization, setup and changeover procedures,
material stocks in storages, production delays with respect to deadlines, elapsed
time, etc. For the following algorithm only the minimizing of the makespan, which
is the finishing time of the job is considered. Note that if the waiting times between
operations are not restricted there would be an infinite set of valid schedules.
General scheduling problems are often like as well in this case limited to job-shop
scheduling because only for this case efficient algorithms for medium- to large-size
problems do exist.

1.2 Timed Automata

Timed automata (TA) were developed by Y. Abdeddaim and O. Maler [AM]. As
already mentionned, in a graphical form they assign resources to nodes, having
transitions between them. They are a useful tool for scheduling.

1.2. TIMED AUTOMATA 6

Figure 1.1: Model of two parallel Job-Timed-Automata

Figure 1.2: Model of twoe parallel Resource-Timed-Automata

1.2.1 Job-Shop Scheduling Modeled by TA

A job-shop scheduling problem can be described by TA in the case of makespan
minimization. There will always be a job automata to solve the scheduling problem.
This job automata consists a chain of nodes representing the different operations.
There are two kind of nodes/location for each operation: one at which the job waits
until the required resource becomes available (lij - for the job i and the operation
step j) and another one l̄ij at which the operation occupies the resource for the
duration d(oij). An additional final location fi indicates that the job is finished.
Clocks ci monitor the duration for which an operation occupies a resource. There
are two kind of transitions: one to start an operation with the label αij and one to
finish it with the label φij. Figure 1.1 shows the model of two parallel working TAs.
One method to enable mutual exclusion in resource utilization is to develop a sep-
arate resource automata. Each resource needs a resource automata with the two
locations idle (i) and busy (b). The same labels αij and φij are connected to the
transitions as for the job automata which achieves synchronisation (see in figure
1.2).
To this solution for mutual exclusion additional timing or capacity constraints can
be added.

1.2. TIMED AUTOMATA 7

Figure 1.3: Tree Structure for Reachability Analysis

1.2.2 Formulation of TA and its Semantics

According to S. Panek, S. Engell, and O. Stursberg [SPE06], a TA is defined as a
tuple (L, l0, E, inv) with a finite set L of locations including the initial location l0, an
invariant inv: L→ B(C) and the set E ⊂ LxB(C)xActxP (C)xL of transitions. Act
denotes a set of actions, B(C) are constraints formulated for a set C of clocks, and
P (C) is a set of reset assignments. The constraints in B(C) are given as conjunctions
of atomic formulae x ∼ n or x−y ∼ n with x, y ∈ C,∼∈ {<,6,=,>, >, } , n ∈ N. A
transition E ∈ (l, g, a, r, l′) with a guard g ∈ B(C), a ∈ Act and r ∈ P (C) between

a source location l and a target location l’ is denoted by l
g,a,r−−→ l′’.

Figure 1.1 shows a set of locations L (oi) with its invariants (for example c1 6 2)
and the transitions with the reset assignments P (ci := 0) and the set of labels Act
(αi and φi).
The authors further described the semantics of an TA A as a labeled transition
system (Q, (l0, u0),∆) with the state space Q consisting of pairs (l, u) with u being
a vector of valuations of the clocks in C. The pair (l0, u0) represents the inital state
and ∆ denotes a transition relation with the following rules:

1. Progress of time: (l, u)→ (l, u+ d) if (u+ e) satisfies inv(l)∀0 6 e 6 d,

2. Transition: (l, u)
a−→ (l′, u′) if l

g,a,r−−→ l′ exists in E for A such that g(u) evaluates
to true and u′ = r(u+ d).

1.2.3 Reachability Analysis and Scheduling for TA

Efficient algorithms exist to determine logic properties of TA by exploring the reach-
ability of TA (see figure reffig:Tree). The tree encodes reachable states symbolically
as pairs (l,Z) of locations l and zones Z. Z is an infinite set of possible clock val-
uations in l and is expressed as a conjunction of finitely many inequalities. The
reachability task has been extended in the past years by considering costs as well.
The objective ist to find a path such that the cost is minimized. In the case of
makespan minimization, the right trace is found when getting the infimum of all
possible traces. There are several tools which can determin the optimal trace of TA:
Uppaal CORA (based on so-called priced zones), IF and TAopt.

8

Chapter 2

Concepts of the Algorithm

The following algorithm is suitable for minimizing the makespan of job-shop schedul-
ing problems modeleld by TA. It includes the reachability algorithms for timed au-
tomata supplemented by a cost evaluation of traces (as mentionned in 1.2.3).

2.1 The Scheduling Algorithm

This scheduling algorithm embeds the generation of lower bounds for the cost-to-go
by using linear programming which can be used to prune the search tree efficiently.
In addition priorities are calculated for the nodes to search towards the optimum and
the search tree is reduced on-the-fly as can be seen in the algorithm shown in figure
2.1. The directed graph is therefore shortened after the so-called branch-and-bound
principle.
The input to the algorithm is a TA model A, an LP model M, an initial location
l0 and a target location l∗. In a target location all operations are scheduled. The
LP model M is an algebraic mixed-integer formulation with relaxed integrality con-
straints, as will be described in 3.1. The algorithm operates on a waiting list W, a
passed list P, and a successor list S. The elements of these lists are nodes defined
as six-tuples (l, u, b, c, d, p) refering to a symbolic state as follows: l denotes the
location, u the vector of clock valuations upon reaching the location, b an under-
estimate of the costs encountered for reaching the final state (all jobs done), c the
accumulated cost of reaching the current state, d the depth of the current node (i.e.
the number of predecessors along the path starting from l0), and p an auxiliary pri-
ority for selecting elements from the waiting list. The cost c represents the minimal
time to reach a destination l in the case of makespan minimization with c∗ being
the minimum found cost which is an upper bound for the graph. According to the
branch-and-bound principle, the branches of the search tree are cut that does not lie
within the lower bound b and upper bound c∗. Figure 2.2 illustrates this principle:
a path along the successors (in yellow) of the current state at depth d = 3 (in blue)
is cut if c+ b > c∗. The algorithm contains the following functions:

2.1. THE SCHEDULING ALGORITHM 9

Figure 2.1: The search algorithm

Figure 2.2: Branch-and-Bound Principle

2.2. COMPUTATION OF LOWER BOUNDS 10

• SolveLP solves the relaxed MILP model of the scheduling problem for the
current model M by linear programming (LP), and returns the objective value
b and the solution vector x which contains the values of the relaxed decision
variables.

• CompPriority computes and assigns auxiliary priorities p to the nodes based
on the quantities b, c, d and x.

• SelectRem selects and removes the six-tuple from the waiting list which has
the highest priority using the various attributes of the nodes.

• CompSucc determines all successor states that are reachable from (l, u) using
the selected six-tuple (l, u, b, c, d, p).

• FilterSucc removes those successor nodes from S which exhibit so-called lazi-
ness (this term will be explained in section 2.4.

• InclusionTest avoids to visit nodes again which have been already explored.

• UpdateM updates the LP model such that some or all (originally relaxed)
variables in Mu are fixed to values that correspond to the history h. The latter
is a partial trace from the initial to the current node. If l = l∗, all variables
that encode the sequence are fixed to zero or one.

When the calculations in the algorithm come to an end because the target location
is reached, P contains the optimal path.

2.2 Computation of Lower Bounds

The lower bounds indicate which path can be excluded because they are subopti-
mal. For the presented algorithm a tailor-made MILP model for the specific case
of makespan minimization of job-shop scheduling is generated. The MILP model is
tailored in the way that only binary variables encode true degrees of freedom but no
additional variables to retain the automaton structure are used. This enables much
faster LP solving and it is not reformulate the TA model in an algebraic model be-
cause it can be dereived directly from the TA. Figure 2.3. shows the overal structure
of a tool which realizes the algorithm presented before in figure 2.1.

2.3 Search Heuristics

An important factor influenceing the performance of the algorithm is the search
heuristic. Depending on the search heuristic the speed towards the optimum changes.
The selection criterion for the following node is implemented in the mentioned func-
tion SelectRem. Selection criteria are based on the node attributes (b, c, d, p)

2.4. NON-LAZINESS AND IMMEDIATE TRACES 11

Figure 2.3: Structure of the Implementation

taking the maximum or minimum value of a chosen attributte. Figure 2.4 displays
the different selection strategies.

Figure 2.4: Selection Strategies

It is often useful to combine different selection criterion so that if the first selection
criterion (e.g. the depth-first strategy) selects more than one node, a second criterion
evaluates this choise and so on until one single node is obtained. Experimental
results of different simple and combined selection criteria will be presented in the
section 4.3.

2.4 Non-laziness and Immediate Traces

The notion non-lazy and immediate traces are used to describe a certain be-
haviour of TA. These traces do not exhibit periods of useless waiting, arising for

2.4. NON-LAZINESS AND IMMEDIATE TRACES 12

example if none of a set of tasks is started whereas the required resources are avail-
able. For non-lazy traces exist a stricter criterion than for immediate traces as can
be seen in figure 2.5. An optimal trace is always at least immediate in the case
of makespan and tardiness minimization. For more general cost functions however,
waiting before/after operations can be advantageous for example if a machine should
not exceed a certain working temperature.

Figure 2.5: The left schedule is non-immediate, the right one is immediate but lazy

To achieve immediate traces unnecessary waiting time in the transition sequence
(l, u) → (l, u + t) → (l′, u′) with t′ < t need to be reduced and the following
sequence is formed: (l, u)→ (l, u + t′)→ (l′, u′). Hence any time transition (which
represents waiting) followed immediately by an allocating ransition can be omitted.
The effect on the search of the symbolic state space is that the number of remaining
time transitions become finite.
With the concept of non-laziness waiting in (l′, u′) in figure 2.5 is only allowed as
long as the operation of job i on machine 2 with length d could not be started and
finished in between. In other words, the waiting period t allowed in (l′, u′) is strictly
limited by the length d of the shortest enabled operation by t < d. “Holes” which are
large enough to be filled with an enabled operation are forbidden in the schedules.
This strategy in which waiting is allowed under certain conditions is therefore also
called weakly non-lazy strategy.
A even more restrictive condition with respect to waiting is strong laziness: when-
ever the list of successor states is not empty, waiting is forbidden in the current state
(l, u). In this strategy as many operations as possible and as early as possible are
scheduled on available resources. Only if no new operations can be started, waiting
is permitted until the next running operation finishes.This method is also called
greedy strategy.

13

Chapter 3

Algebraic Mixed-Integer Linear
Programming Formulation

As already mentionned before, lower cost bounds are helpful to efficiently prune the
reachability tree. For this purpose, the MILP model of the underlying scheduling
problem is relaxed, modified to reflect the current state of the scheduled system, and
solved. Relaxed means that an operation can be allocated for example 90% of the
execution time of an operation is allocated on resource 1 and 10% of its execution
time on resource 2. This is useful to calculate quickly a lower bound. However for
the scheduling an operation is fixed to only one resource.

3.1 Algebraic MILP Formulation

The key principle is to use binary variables only to encode the possible sequences
in which operations are processed on the same resource. This means that for each
pair (oi, oj) of operations with v(oi) = v(oj) one binary variable is defined, and its
value describes which operation is processed first. In addition, continuous variables
are used to encode starting dates of operations.
For the description of a job-shop scheduling problem the following variables, param-
eters and constants are needed:

• duration of the operations: d(o)

• overall time horizin H as a safe upper bound for the makespan

• positive continuous variables to store the starting dates of the operations: s(o)

• Binary variables to indicate the order in which the operations are executed
on each resource with p(o, o′) = 1 if o is executed before o′ and p(o, o′) = 0
otherwise.

3.2. EXAMPLE OF THE ALGEBRAIC MILP FORMULATION 14

Figure 3.1: Timed Automata for MILP Formulation

In addition equations are needed to complete the algebraic form:

• Each operation must be started at or after time zero, and must be finished
before H : ∀o ∈ O : s(o) > 0, s(o) + d(o) 6 H.

• All operations belonging to one job must be executed in the specified order:
∀oi, oq ∈ O with (oi) = κ(oq) ∧ i < q : s(oi) + d(oi) 6 s(oq).

• Simultaneous execution of operations on one resource is excluded by: p(o, o′)+
p(o′, o) = 1 for all operations assigned to one resource.

• The start and end times of the operations executed on a resource are ordere by
the following condition: s(o) + d(o)− s(o′) 6 H(1− p(o, o′)) for all operations
assigned to one resource and o 6= o′.

• The minimization of the makespan is written in (in-)equalities as min Ψ such
that Ψ > s(o) + d(o) for all operations.

3.2 Example of the Algebraic MILP Formulation

For the small Timed Automata example shown in figure 3.1 in which o1 and o3 need
the same resource the following equations are needed to develop an Algebraic MILP
Formulation:

• Time horizon: H = 100

• Execution order: s(o1) + 2 = s(o2)

• Mutual exclusion: p(o1, o3) + p(o3, o1) = 1

• Makespan: min Ψ with s(ō2) + d(ō2) > Ψ, s(ō3) + d(ō2) > Ψ′

15

Chapter 4

Experimental Results

To test the presented algorithm S. Panek, O. Stursberg and S. Engell employed two
series of job-shop instances to investigate its performance. In this chapter a brief
summary of the results will be given (more data in ??).

4.1 Test Series

The first series (A) was produced by a random generation procedure which creates
as many operations in the way that for each job there is one operation per resource.
The duration of a resource is distributed randomly over 1,2..,6. The operations are
randomly assigned to the resources for each job. The number of jobs are varied from
2 to 6 and the number of resources from 2 to 4. This instances are sufficiently small
to explore the state space until the waiting list gets empty, and thus can guarantee
to compute the optimal solution.

The second series (B) is a set of job-shop benchmark instances published in the
operations research literature in the past 20 years.
In all tests the software tool called TAopt was used. It is an implementation of:

• cost-optimal reachability algorithm for TA employing branch-and-bound

• computation of lower bounds from embedded LP problems

• various node selection criteria (like Depth-First Search etc.)

• weak and strong non-laziness and the sleep set method

In order to solve the embedded LP problems, the commercial package Cplex 9.0 was
used, and both test series were carried out on a 2.4 GHz Pentium 4 machine with 1
GB of memory, SuSE Linux 8.1.

4.2. TECHNIQUES FOR STATE SPACE REDUCTION 16

Figure 4.1: Number of Explored Nodes using Different Techniques for State Space
Reduction

4.2 Techniques for State Space Reduction

The pure standard depth-first method was compared to the standard depth-first
method with branch-and-bound (bb) or with weak non-laziness (wnl) and strong
non-laziness (snl) settings in terms of explored nodes (see figure 4.1). Results on
series A show that the number of explored nodes significantly decreases when using
branch-and-bound techniques with embedded linear programming. Another ob-
servation is that configurations involving non-laziness show that weak and strong
non-laziness drastically reduce the number of explored nodes in most cases. How-
ever weak non-lazyness cannot use clock reduction techniques because of the need
for clock evaluations for the employed condition d 6 t. This is the reason why not
always fewer nodes were explored. Results reveal as well that combinations of in-
dividual methods (weak or strong non-lazyness and branch-and-bound) lead to an
even stronger reduction of explored nodes.

4.3. SEARCH STRATEGIES 17

(a) min c (b) max d (c) max d, min c

(d) max d, min b (e) max d, min b, min c (f) min b

(g) min b, min c (h) min b, max d (i) min b, max d, min c

Table 4.1: Search Strategies

Figure 4.2: Number of Explored Nodes using Different Search Strategies

4.3 Search Strategies

The explored nodes using the search strategy combinations listed in table 4.1 are
shown in figure 4.2.
It was observed that min c (best-first) criterion is not the method of choice because
the number of explored nodes is quite high. Combined criteria are found to be
preferable for the majority of tests and in particular the combination of min b and
max d produced good results throughout.

4.4. TEST FOR BENCHMARK EXAMPLES FROM LITERATURE 18

4.4 Test for Benchmark Examples from Litera-

ture

For series B different tools were compared: Cplex for a pure MILP solving, TAopt for
the presented approach of combining MILP solving to find a lower bound with TAs
and Kronus a TA-based programm which does not consider lower cost bounds. CPU
usage ws limited to 1 hour. TAopt was used as for series A with the combination
of branch-and-bound and strong non-laziness. However instead of the following
selection criterion for the waiting list: dipth-first-based strategy max d, min b, minc
the best-lower-bound strategy min b, max d, min c was chosen because the first
strategy didn’t compute the optimal solution within 1 hour. TAopt was run with
and without generation of lower bounds. The configuration without lower bounds led
to a memory overflow such that the nodes had to be restricted to 107. With only one
exception the configuration with lower-bounds produced a better solution (closer to
the optimum) than the one without lower-bounds. The programm Cplex perforemd
the best for small instances (e.g. 10 jobs and 10 resources) however for bigger
instances (e.g. 15 jobs and 15 resources) the limited computation time prevents
Cplex from finding better solutions, such that TAopt performed better. Also it was
discovered that although TAopt needed slightly more time to find a first feasible
solution the cost bounds are significantly lower for the remaining computation time.
In comparison with Kronus half of the time TAopt finds slightly better solutions
than those reported by Kronus. Some problem instances could not be solved by
Kronus within the computation time of 1h.

19

Chapter 5

Extensions to More General
Scheduling Problems

In industry however the simple structure of job-shop scheduling is not always suffi-
cient to describe the situation. Sometimes alternative or parallel paths are needed
or the the individual operations only need to follow a partial order. There might
be timing constraints between operations which must be considered (e.g. time in-
tervals in which an operation needs to be finished) or for changeover procedures for
a material to another resource, the allocated resource doesn’t execute an operation
and could be configured in a different way during this time. The availabitlity of a
resource might be lmited for example to day time only. Another type of usual con-
straint accounts for the fact that operations consume or produce materials. Hence
a limitation on storage, resource capacity and batch size needs to be considered.
However TA are not restricted to deal only with job-shop problems. They can be
altered so that most of the cases just mentioned can be dealt with:

• Alternative production paths can be described through another inserted pos-
sible operation-resource-pair.

• Parallel production paths are modeled by a parallel separate TA. Using addi-
tional shared binary variables mutual exclusion of operations of the same job
is guaranteed.

• Timing constraints can be included by invariants in waiting locations and
guards on outgoing transitions.

• For changeover procedures additional waiting locations with appropriate guards
on their transition are added to ensure that the resource automation waits until
the changeover period expires.

• Restricted working times can be handled by employing separate night-shift
and weekend automata which are synchronized with the original automata
amd blocking them at the times the machines should not run.

20

• The size of material stocks can be expressed by shared variables. The con-
sumption of material and production of another material can be formulated
by introducing guards and actions on the corresponding transitons.

21

Chapter 6

Conclusion

A quite recent approach to job-shop scheduling from S. Panek, O. Stursberg and
S. Engell has been presented that combines reachability computations for timed
automata with a branch-and-bound principle using lower cost bounds obtained from
embedded linear programming, and with the sleep set method and the notion of non-
lazy traces to exclude non-optimal solutions. The experimental results revealed that
for larger problem instances solutions are found within a limited computation time
that are comparable to or even better than those obtained with established MILP
techniques. Hence the mixed TA/LP approach is prefered for good schedules of
large problems within a short period of time. Another advantage of timed automata
is the intuitive modular form in separate job and resource automata with a simple
structure whereas finding a problem formulation that can be efficiently solved by
mixed-interger programming tolls can be cumbersome and time-consuming task. In
comparison to other TA-based methods (as implemented Kronos), the embedded
linear programming step can be assessed as follows: it leads to a trade-off between
an increased computation time per node, and a reduced number of nodes explored.
The results obtained for the larger problem instances show that the benefits of
an efficient pruning and of using the cost bounds to minimize the search are larger
than the increase of computation time per node caused by the LP step. The effect of
pruning also leads to smaller memory consumption, which is not a negligabe aspect
because scheduling of large problems with tools for model checking often fails du to
memory overflows and not to prohibitive computation time.

BIBLIOGRAPHY 22

Bibliography

[AM] Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata.
In G. Berry and H. Comon, editors, Computer Aided Verification (CAV).

[EKS93] C. Pantelides E. Kondili and R. Sargent. A general algorithm for short-
term sched. of batch operations - milp formulation. Comp. Chem. Eng.,
(17):211–227, 1993.

[Kal02] J. Kallrath. Combined strategic and operational planning - an milp suc-
cess story in chem. ind. OR Spectrum, (24):315–341, 2002.

[SPE04a] O. Stursberg S. Panek and S. Engell. Job-shop scheduling by combining
reachability analysis with linear programming. In 7th Int. IFAC Workshop
on Discrete Event Systems, pages 199–204, 2004.

[SPE04b] O. Stursberg S. Panek and S. Engell. Optimization of timed automata
models using mixed-integer programming. In Formal Modeling And Anal-
ysis of Timed Systems, volume volume 2791 of LNCS, pages 73–87.
Springer, 2004.

[SPE06] O. Stursberg S. Panek and S. Engell. Efficient synthesis of production
schedules by optimization of timed automata. Control Engineering Prac-
tice, 14(10):1183–1197, 2006.

[SPS] S. Engell S. Panek and O. Stursberg. Scheduling and planning with timed
automata. In 16th Europ. Symp. on Computer-Aided Process Engineering.

	1 Introduction to Scheduling
	1.1 Job-Shop Scheduling
	1.2 Timed Automata
	1.2.1 Job-Shop Scheduling Modeled by TA
	1.2.2 Formulation of TA and its Semantics
	1.2.3 Reachability Analysis and Scheduling for TA

	2 Concepts of the Algorithm
	2.1 The Scheduling Algorithm
	2.2 Computation of Lower Bounds
	2.3 Search Heuristics
	2.4 Non-laziness and Immediate Traces

	3 Algebraic Mixed-Integer Linear Programming Formulation
	3.1 Algebraic MILP Formulation
	3.2 Example of the Algebraic MILP Formulation

	4 Experimental Results
	4.1 Test Series
	4.2 Techniques for State Space Reduction
	4.3 Search Strategies
	4.4 Test for Benchmark Examples from Literature

	5 Extensions to More General Scheduling Problems
	6 Conclusion
	Bibliography

