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Chapter 1

Introduction

This report summarizes the research activity on optimal control problems for hybrid
systems in manufacturing mainly proposed by C. G. Cassandras and D. L. Pepyne
[Pep00]. In the first chapter an overview of control problems related to manufac-
turing is given. The need to develop a hybrid system framework for a solution of
the optimal control problem is explained and some basics about hybrid systems in
general are proposed. The second chapter explains the hybrid system framework in
more detail and shows several ways on how to interpret the optimal control problem.
What follows is the analysis of the optimization problem and a discussion of possible
solutions. The chapter ends with a presentation of the algorithm specifically tailored
to the introduced hybrid system framework.

1.1 Control Problems in Manufacturing

Considering the manufacturing process of a metal-making company individual metal-
ingots undergo various operations during production (e.g rolling, milling, machining
metals) until the final product is released.
A common operation in metal-making involves slowly heating up the metal-strips in
an oven, keeping them at a certain temperature level and cooling them down again
under control (annealing) to achieve a desired grain structure (stiffness, hardness).
In this case the task of the process control is to determine when to switch operation
times in order to achieve a defined heating profile.
This brief description of the production process shows already the major control
problems that are related to manufacturing. A number of time-consuming individ-
ual steps need to be processed to achieve a high quality in the finished product.
When trying to integrate these processes into the plant-wide scheduling of the pro-
duction plant this objective is clearly in conflict with the importance of a timely
delivery of the products.
In manufacturing it is a common problem to find a control strategy that is able to
deal with these trade-offs between quality aspects and job completion deadlines. The
hybrid system framework introduced in [Pep00] is able to cope with these conflicts
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and to find a solution on the proposed optimal control problem.

1.2 A Hybrid System Framework for Manufactur-

ing

To formulate the optimal control problem mathematically a suitable process model
is required that takes into account all aspects of the manufacturing process. As the
process model shall be applicable to any manufacturing process of the same type a
general description of the individual subtasks is required. Therefor all process action
that actually changes the physical characteristics of a product is simply referred to
as jobs. The abstract term server is used to characterize all workstations (e.g. an
oven) each job has to visit during manufacturing.

During processing there is a change in the physical characteristics (shape, quality)
of each job. These time-driven dynamics can be described by a set of (continu-
ous) differential equations. Within the production scheme processing start and stop
times represent discrete-event dynamics and they are modeled by equations derived
form queuing networks theory.
As discrete and continuous dynamics are interacting very closely together they define
a hybrid system for the manufacturing process.

Figure 1.1: Physical and temporal states within a hybrid system

The framework proposed to solve the optimal control problem refers to these forms
of the dynamics as the physical states (e.g temperature, energy) and the temporal
states (operation start and stop times).

1.3 General remarks on Hybrid Systems

Hybrid systems are used in general for processes that combine event-driven with
time-driven dynamics behavior. A simple example for a hybrid system is a climate
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control system used to keep the room temperature within a certain interval (figure
1.2). Similar examples for hybrid systems may be found in [Stu07].

Figure 1.2: A climate control systems as an example for a hybrid system

The discrete states are simply defined as Q = 0, 1 which refers to the radiator being
in ”On” or ”Off”-state. The transitions between these two states are depending on
the continuous variable (= room temperature). During each state the room tem-
perature evolves according to some time-driven dynamics. This movement of the
physical state trajectories is shown in the second chart of figure 1.2.

In general there are various types of modeling framework for hybrid systems. The
climate control systems may be described using a hybrid automaton. Some other
model framework extend time-driven models that allow discrete events to be in-
jected. Again others are based on event-driven models with an extension of time-
driven activities between event occurrences.

Referring back to the manufacturing processes, the hybrid systems framework can
be viewed as an extension of a queuing network model. This framework will be
explained in more detail in the following chapter.
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Chapter 2

Optimal Control of Hybrid
Systems in Manufacturing

2.1 Modeling of a Single-Stage Manufacturing Pro-

cess

2.1.1 A Single-Server Queuing System

For the following analysis and solution of the optimal control problem, the manu-
facturing process considered is limited to a single operation. A suitable model to
represent this process is shown in figure 2.1 as a single-server queuing system.

Figure 2.1: Modeling of a single-stage manufacturing process

As in standard queuing theory the buffer or waiting area is represented as a set of
(open) rectangles. Incoming jobs are stored in this buffer (”queue”) until they are
processed by the server. The server itself is denoted by a circle and is subjected to
several restrictions: It never idles when there are jobs in the queue and service is
never interrupted once processing on a job has started (”non-preemptive server”).
The entire scheme of job processing follows a first-come, first-served principle (FCFS).
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A series of i = 1, 2, ..., N jobs is assigned to the server by an external resource. Job
arrival times 0 ≤ a1 ≤ a2 ≤ ... ≤ aN ≤ ∞ are assumed to be known. The processing
time for each single job is denoted by si(ui) where ui is the control variable. A
further restriction is that the control ui is considered as being time-invariant over
the course of the processing time si.
The system is hybrid in the sense that it combines continuous (time-driven) dynamics
with discrete (event-driven) dynamics:

1. Time-Driven-Dynamics: During job processing the physical state zi of a job i
changes according to a deterministic differential equation:

˙zi(t) = gi(zi, ui, t); zi(τi) = ζi (2.1)

where τi is the processing start time for job i and ζi is the state of the job at
that time.

2. Event-Driven Dynamics: The standard Lindley equation for a FCFS server is
used to describe the completion time xi for each job:

xi = τi + si(ui) = max(xi−1, ai) + si(ui) (2.2)

where ai is the processing start time of job i.

Justifying the hybrid nature of the system, equations 2.1 and 2.2 show that the
control ui can affect both, time-driven and event-driven dynamics.

2.1.2 Control Policy for a Hybrid System Framework

The control policy for the hybrid system framework is to determine how the jobs
are being processed through the system optimally. Since process arrival times are
assumed to be known the goal is to adjust the processing time for each individual
job so that production requirements are met optimally.
Considering the optimal control problem in a more general way one can distinguish
between several technical sub-problems related to a manufacturing process:

1. Compute control trajectories for optimally steering the physical system state.

2. Choose the optimal processing time for each job.

3. Determine the order of job processing.

4. Consider the sequence of servers each job has to visit.

For each individual subproblem there exist several solutions on who to come up with
a solution. A solution on 1) is given through Nonlinear Optimal Control. 2) can be
tackled by taking into account discrete-event dynamic system performance wheres
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scheduling methods provide some useful approaches on how to solve subproblem 3)
and 4).

The problem of a hybrid system is that within such a system all of those four
subproblems are coupled very tightly together and a ”general” solution on how to
solve the optimal control problem is extremely hard to find. The crucial point is
that in general available methods collapse by taking into account all of those four
subproblems.

2.1.3 Interpretation of the Hybrid System Framework

Referring back to the single-server queuing system introduced in section 2.1.1 an
appropriate way on how to interpret the queuing mechanism might be as a discrete
event system that is extended by some time driven dynamics. The time-driven dy-
namics represent the physical state of each job and the discrete events are determined
by the temporal state.

Figure 2.2: Typical state trajectories of a hybrid system

Figure 2.2 shows the evolution of the physical state zi as a function of the tem-
poral state (which simply can be interpreted as the ”time-axis”). The continuous
dynamics are ”interrupted” by exogenous (uncontrolled) job arrival events ai and
by controlled job release events xi.
Consider job 1: After the uncontrolled job arrival event a1 processing on the job
starts and its physical state begins to move according to ż1 = g1(z, u1, t). At the
time x1 job 1 is released from the server and as there are no further jobs in the
queue the server runs in idle-mode waiting for the arrival of new jobs.

The processing time si(ui) for each job has to be chosen with respect to a certain
quality ”level” denoted by Γi each job must fulfill:
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si(ui) = min[t ≥ 0 : zi(τi + t) =

∫ τi+t

τi

gi(s, ui, t)ds+ ζi ∈ Γi] (2.3)

Equation 2.3 is referred to as the ”stopping rule” and it means that it is only possible
to release a job from the server after its physical state zi has reached a level that is
above the desired quality level Γi.

2.2 Formulation of the Optimal Control Problem

Regarding the optimization problem introduced by the hybrid system framework
there exist at least two optimization goals that are clearly in conflict with each
other. On the one hand the processing time for each job has to be chosen in a way
that we do not miss any job completion deadlines (upper bound for the processing
time). On the other hand it is desirable to guarantee a certain quality level which
defines the minimum processing time for each job (lower bound for the processing
time). To match both of these requirements the hybrid system framework needs to
trade-off time critical issues against quality aspects.
As for any optimization problem a crucible step is to set up a suitable cost function
J that takes into account the desired behavior of the system. For the above defined
hybrid system framework the optimal control objective is to choose a control policy
π = u1, u2, ..., uN to minimize an objective cost function of the form:

min
π
J =

N∑
i=1

Θi(ui) + Ψi(xi) (2.4)

where Θi is a function to assign a cost on the control ui and Ψi(xi) is used for
charging delayed job completion times xi. Equation 2.4 shows that there is no
explicit cost on the physical state zi. But clearly the stopping criterion (equation
2.3) guarantees that the physical state of each completed job satisfies the pre-defined
quality objectives zi(xi) ∈ Γi.
By taking a closer look on the cost function two different ways on how to interpret
the optimal control problem can be identified.

2.2.1 Class-1 Control Problems

For the first class of control problems the cost function J(Θi,Ψi) trades off quality
aspects against job completion times and the control ui is simply interpreted as the
processing time si. Mathematically Class-1 problems need to satisfy the following
requirements for each job i = 1, ..., N :

1. Θi(.) is twice continuously differentiable, strictly convex and monotonically
decreasing.
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2. Ψi(i) is twice continuously differentiable, strictly convex and its minimum is
obtained for a finite point δi.

3. si(.) is linear with si(ui) = α · ui

For this type of control problems the physical state zi is interpreted as a measure
of the achieved quality. If the processing time si is chosen beyond a certain point
there are increasing costs due to a lack of quality in the manufacturing process.

2.2.2 Class-2 Control Problems

This type of control problems trades off the processing speed against the job com-
pletion time by an appropriate choice of the cost function J(Θi,Ψi). The control
ui is interpreted as the effort applied to the job. An example for the abstract term
”effort” might be the energy that is applied to a furnace to achieve a defined heating
profile. The following rules hold for each job:

1. Θi(.) is twice continuously differentiable, strictly convex and monotonically
increasing.

2. Ψi(i) is twice continuously differentiable, strictly convex and monotonically
increasing.

3. si(.) is twice continuously differentiable, strictly convex and monotonically
decreasing.

When considering a class-2 problem the goal is to process each job until it has met
a defined final state zi(xi) = q starting from an initial raw state zi(τi) = ζi = 0. As
the control ui is interpreted as the effort applied to each job it is convenient to in-
terpret the movement of the physical state for each job simply as the control żi = ui.

An example for a class-2 control problem is given in [Pep00]:

si(ui) = q
ui

(2.5)

Θi(ui) = u2
i (2.6)

Ψi(xi) =

{
0, if xi < δi

(xi − δi)2, if xi ≥ δi
(2.7)

The processing time si in equation 2.7 results from the desired quality level and the
effort used to reach this level. To satisfy the mathematical definitions of a class-2
control problem a typical choice for Θi(ui) is to assign a quadratic cost on the effort
applied to each job. To penalize long processing times beyond a certain due date
again a quadratic approach for Ψi(xi) is utilized.
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2.3 Analysis of the Optimization Problem

For the analysis of class-1 optimization problems a more general form of the cost
function is discussed in [PW01]. In this case J(xi, λ, ui, ) is not split-up into the
sub-functions of Θi(.) and Ψi(.) but is regarded as one function in xi, λ, ui.

J(x, λ, u) =
N∑
i=1

Li(xi, ui) + λi[(xi−1, ai) + si(ui)− xi] (2.8)

where ai and xi are again job processing start- and stop times and λi is an N-
dimensional vector for the co-state. A necessary condition for a point to be a local
minimum requires the first partial derivatives of equation 2.8 to be zero. This leads
to the following expressions:

∂J

∂ui
= 0 ⇒ ∂Li(xi, ui)

∂ui
+ λi

dsi(ui)

dui
= 0 (2.9)

∂J

∂λi
= 0 ⇒ xi = max(ai, xi) + si(ui) (2.10)

∂J

∂xi
= 0 ⇒ λi =

∂L(xi, ui)

∂xi
+ λi+1

d ·max(xi, ai+1)

d · xi
(2.11)

Equations 2.10-2.11 define a two-point-boundary-value problem (TPBVP) which can-
not be solved using standard algorithms. The fundamental problem is the nondif-
ferentiability of the max -function in the co-state equation (2.11). This function is
clearly not defined at the point where its arguments are equal (xi = ai+1). At all
other points it is differentiable with:

d

dxi
max(xi, ai+1) =

{
0, if xi < ai+1

1, if xi > ai+1
(2.12)

This special structure of the cost function introduced by the even-generating mech-
anism of the hybrid system framework makes it impossible to use basic variational
(gradient-based) methods. Those methods require the cost function to be ”smooth”
(differentiable) everywhere.
Another method of solution might be given through dynamic programming (DP)
which uses algorithms based on recursion and memorization. The problem about
DP is that the computational effort to search over the whole policy space for the
optimal solution is extremely high even for modest optimization problem. For the
purpose of the above defined hybrid system framework this means that the number
of jobs considered has to be fairly small.
Furthermore first-order approximations might be considered when trying to solve
the optimal control problem. Such solutions reduce the complexity of computation
significantly but always yield the danger to end up in a local- instead of a global
extremum.
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A more general solution that takes into account the nondifferentiability of the max -
function is introduced in the next section that explains some of the basic ideas of
nonsmooth optimization theory.

2.3.1 Nonsmooth Optimization

To illustrate the problem of a nonsmooth cost function in more detail an example
for a class-1 optimization problem with a number of jobs N = 2 is considered. The
following example may be found in [PW01].

Θ1(u1) =
1

u1

, Θ2(u2) =
1

u2

(2.13)

Ψ1(x1) = x2
1, Ψ2(x2) = (x2 − 30)2 (2.14)

By evaluating equation 2.4 for known job arrival times a1 = 2 and a2 = 3 the cost
function J(u1, u2) results to:

J(u1, u2) =
1

u1

+
1

u2

+ (2 + u1)
2 + [max(2 + u1, 3) + u2 − 30]2 (2.15)

where the last term in equation 2.15 includes the max -function that holds the prob-
lem of the nondifferentiability. Figure 2.3 clearly shows that the cost function is in
general not smooth. The points of nondifferentiabily are located along the crease

Figure 2.3: Plot of a portion of J(u1, u2)

running in the direction of u2. At those points job arrival times of the second job
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a2 coincide with the release times of job one (x1). Those jobs remark a critical
component within the solution and the goal is to exclude them from computation.
In general they are defined as:

Definition: A job i = 1, ..., N is called critical if xi = ai+1.

where xi is again the release time for the active job and and ai+1 is the arrival time
of the next job.

Critical jobs reflect the idea of a just-in-time production scheme which means that
the processing time si(ui) is chosen such that a job is processed as long as possi-
ble and that is released from the server at the earliest with the arrival of the next job.

In order to come up with a solution for a nonsmooth cost function the maximum-
principle concept introduced in equations 2.10-2.11 needs to be extended by the
definition of Lipschitz continuous functions. For a Lipschitz continuous function the
inequality defined in equation 2.16 has to be satisfied.

|f(x)− f(y)| ≤ K|x− y| (2.16)

where K is a positive constant and x, y ∈ E are an open subset of <N . Lipschitz
functions are continuous but need not be differentiable everywhere. The objective
function in equation 2.4 satisfies those requirements and is a Lipschitz continuous
one.

Due to the event-generating mechanism cost functions in hybrid optimal control
are normally Lipschitz continuous and the procedure of finding the optimal solution
is a generalized one.
When considering continuously differentiable functions a necessary condition for a
point to be a local extremum is that the gradient is zero at that point. Since for
Lipschitz continuous functions the gradient does not exist everywhere, necessary
conditions for optimality are formulated as a generalization of the gradient [Pep00].
This generalization makes use of the subdiffertial f at u, denoted by ∂f(u).

The most important property of the subdifferential is that if u is a local extremum
of f then 0 ∈ ∂f(0). This behavior of the subdifferential provides a method to
check if the optimal solution for a nonsmooth optimization problem fulfills the con-
ditions for optimality. Solving the optimization problem therefor requires deriving
an expression for the subdifferential J(u1, ..., uN).

2.3.2 Subdifferential Derivation

As an example for the evaluation of the subdifferential the function f(x) = |x| is
considered. This function is Lipschitz continuous since it is differentiable everywhere
except at the origin.
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Figure 2.4: Plot of f(x) = |x|

For the evaluation of the subdifferential the left and right derivative of f(x) at the
origin are given through:

lim
x↑0−

(df(x)/dx) = −1 (2.17)

lim
x↑0+

(df(x)/dx) = +1 (2.18)

Then the subdifferential ∂f(u) is defined as ∂f(0) = [−1, 1] which represents just a
closed interval on the real-axis and clearly 0 ∈ ∂f(0).

For the control algorithm presented in section 2.4 the evaluation of the subdifferen-
tial is not much different than from the one presented by the norm-of-x function.
When calculating the left and right derivative of possible job release times a simple
sign check is implemented in the code to evaluate the subdifferential.

2.3.3 Definiton of a Sample Path

When making use of the subdifferential it is useful to introduce a sample path which
is defined by a sequence of job arrival- and job release times. Such a sample path
can be divided into busy periods and idle periods. During a busy period the server
is actively processing on a job and when the server is in idle mode then there are no
further jobs in the queue that need to be processed. Figure 2.5 shows a sequence of
such a sample path.
By taking a closer look on the sample path in figure 2.5 a block structure can be
identified which allows to split up a busy period into several sub-blocks. Such a
sub-block is determined by the timely occurrence of critical jobs. Each sub-block
(except the last one in in the busy period) is terminated by a critical job.
For example consider job (m + 1): Since xm = am+1 this job is a critical one and
therefor determines the end of the first block. The second block within the busy
period starts with the first job after the critical one.
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Figure 2.5: Separation of a sample path into busy and idle periods

Referring back to the subdifferential which is now given through the left and right
derivative of J(u1, ..., uN) with respect to u1, ..., uN consider a control scheme that
is limited to a single block with jobs j = i, ...,m(i). It is possible to adjust the
departure times for each job through:

xj = max(xi−1, ai) + si(ui) +

j∑
k=i+1

sk(uk) (2.19)

Since for all jobs within the block (except the last one) xm(i) < am(i)+1 the max -
function is clearly defined. For the last job in the block the left and right derivatives
are evaluated with respect to the control ui:

ζ−i = lim
xm(i)↑am(i)+1

∂J

∂ui
(2.20)

ζ+
i = lim

xm(i)↓am(i)+1

∂J

∂ui
(2.21)

Using these equations (2.21 and 2.21) is now possible to prove whether a solution for
the optimal control problem is a unique one. According to [GW98] the inequality
ζ−i ≤ ζ+

i must be true for all jobs i = 1, ..., N which leads to the subdifferential of
the objective function:

∂J = [ζ−1 , ζ
+
1 ]× ...× [ζ−N , ζ

+
N ] ⊂ <N (2.22)

Now the optimal control sequence for each job i = 1, ..., N must satisfy 0 ∈ [ζ−i , ζ
+
i ] ⊂

<1.
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2.3.4 Decoupling Properties

The decoupling properties of the sample path allow the decomposition of the optimal
state trajectory into fully independent sub-segments which simplify the analysis of
the optimization problem. The following statements for the decoupling properties
are a summary of the lemmas established in [Pep00], proofs for them can be found
in [GW98].

Idle Period Decoupling Property

• The optimal controls u∗i are only dependent on job arrival times
and on the number of jobs within each busy period.

• The controls ui for individual busy periods can be computed inde-
pendently.

Block related Decoupling Property

• Controls ui for jobs before and and after a critical job are indepen-
dent of each other.

• Each busy period can be split-up into blocks which can be calculated
independently.

The idea of these decoupling properties is to solve the large optimization problem
as a series of smaller independent subproblems. This allows to restrict the number
of degrees of freedom for each subproblem and speeds up computation significantly.
An essential step when making use of these properties is the identification of the
busy period structure.

2.3.5 Critical Job Identification

It can be shown that for the hybrid system framework almost any sample path will
have critical jobs and therefore will contain points of nondifferentiabliy in the ob-
jective function. This section explains some of the main properties that can be used
to identify the busy period structure.

Without loss of generality the first busy period of a sample with a number of
jobs i = 1, ..., B is considered. The optimal job departure times are denoted by
xiB , i = 1, ..., B where i is the job index and B is the number of jobs within the busy
period. It can be shown [PW01] that for such a busy period:

• The optimal job departure times xi,B are only dependent on a1 and B.

• The optimal job departure times are monotonically decreasing with B.
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Figure 2.6: A busy period with precomputed optimal job departure times

Making use of these properties a pre-computation of the optimal job departure times
for all jobs within the busy period is possible. Figure 2.6 shows such a busy period
with given arrival times ai and optimal departure times xi,B.
Since intervals of the form [xi,B, xi,i] for any B and i = 1, ..., B − 1 are now well
defined (because xi,B ≤ xi,i), it is possible to make a statement whether or not a
busy period will contain any critical job.

Lemma 1: A busy period with jobs i = 1, ..., B contains at least one
critical job if ai+1 ∈ [xi,B, xi,i] for one or more jobs i = 1, ..., B − 1.

Such an interval [xi,B, xi,i] is referred to as a critical interval. To identify which of
these jobs is critical the following lemma is introduced in [Pep00].

Lemma 2: Considering a busy period with a number of N jobs remain-
ing to be processed: If there exists some L ≤ N such that ai+1 < xi,N
and xL,L+1 ≤ aL+1 ≤ xL,L then job L is critical.

In other words Lemma 2 means that depending on job arrival times and the pre-
computed optimal departure times, one can make a statement whether or not a job
is critical.

Figure 2.7: Critical intervals for an example with N=3 (considering job 1)

As an example for the critical job identification figure 2.7 shows a sample paths
for a number of three jobs. The optimal job departure times x1,1, x1,2, ..., x3,3 are
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precomputed for a given arrival time of the first job a1. When applying the intro-
duced lemmas to the sample path, the location of a2 relative to the critical interval
[x1,2, x1,1] allows to determine whether job 1 is critical, whether it ends the first busy
period or whether it is part of the busy period containing at least job 1 and job 2.

Figure 2.8: Critical intervals for an example with N=3 (considering job 1-3)

By considering the last sample path in figure 2.8 the need for a further criterion on
the identification of critical jobs arises. If x1,3 ≤ a2 ≤ x1,2 and x2,3 ≤ a3 ≤ x2,2 then
both jobs satisfy the condition for a critical one and it is not possible to determine
which of them or if both of them are critical.

In this case equation 2.22 helps to find a unique solution. Each critical job must
satisfy 0 ∈ [ζ−i , ζ

+
i ]. Therefor by checking the sign of the left and right derivatives

for each job it can be shown which one of these jobs are critical.

2.4 A Backward Recursive Algorithm

This section shall give a brief overview of the algorithm presented in [Pep00] to find
a solution on the optimal control problem. The essential idea of the algorithm is
to decompose the overall nonsmooth optimization problem into a series of smooth
nonlinear subproblems that can be solved using standard gradient-based solvers
(TPBVP). Such algorithms are presented in [Kir70]. By doing so the algorithm
invented by C. G. Cassandras and D. L. Pepyne makes use of terminal constraints
(TCs).

Figure 2.9: A busy period consisting of tho blocks
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Figure 2.9 shows a busy period containing jobs k, ..., n(k) which is subdivided in
two blocks. Then by the idle period decoupling property and the partial decoupling
property introduced in section 2.3.4 the optimal controls for the jobs in the busy pe-
riod can be determined by solving two independent TPBVPs. A TC xm(k) = am(k)+1

is used to determine the end of the first block. The second block does not end with
a TC since this is the last block in the busy period and therefor can never contain
any critical job.

These terminal constraints provide a useful way on how to determine the block
structure of a sample path. A definition of each individual sub-problem is given in
equation 2.23:

Problem Pj,k(C) : min
uj ,...uk

J =
k∑
i=j

Θi(ui) + Ψi(xi) (2.23)

where, if C = 1 a terminal constraint xk = ak+1 is added to the block and for the
case C = 0 no critical jobs are considered and the problem solver is called through
Pj,k(0). Furthermore the following definition for the derivatives is given:

ζj,k =
dΘj

duj
+
dsj
duj

k∑
i=j

dΨi

dxi
(2.24)

respectively for the left and right derivatives of jobs N = j, ..., k.

The algorithm operates in a backward-recursive manner: Calculation starts with
the last job N in the queue for which the optimal control u∗N and the optimal job
release time x∗N is determined. Next, the last but one job N − 1 is considered. To
determine the optimal controls u∗N−1, u

∗
N and the optimal release times x∗N−1, x

∗
N it

is first assumed that the job is a critical one.
Then by computing the quantities ζ4,4 and ζ4,5 according to equation 2.24 a state-
ment about the coupling between these two jobs can formulated. A simple sign test
performed on these quantities tells about whether this job should go into the same
busy period or whether it should start a new one. This procedure is executed on
each further job and it finishes with the computation of the first job in the queue
(backward-recursive).

For a more detailed description of the algorithm including some example code the
reader is referred to [CP00] and [Pep99].
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Chapter 3

Summary

This report gives an overview of the hybrid system framework introduced by C.
G. Cassandras and D. L. Pepyne designed to deal with optimal control problems
related to manufacturing. As a restriction only single-stage processes are analyzed
by the author although the framework could be easily extended towards multi-stage
processes.
The frameworks´ main objective is to trade-off time / quality aspects, both con-
flicting issues by an appropriate choice of the cost function. Two ways on how to
interpret the optimal control problem are presented. Depending on the role of the
control - either as the service time for an individual job - or as the effort applied to
a job the cost function is chosen differently.

The analysis of the optimization problem shows the difficulty in finding a solution
because of nondifferentiability and nonconvexity of the objective function. Nons-
mooth optimization with Lipschitz continuous functions is introduced to deal with
these properties of the cost function.

The solution approach proposed in [Pep00] follows a ”divide-and-conquer” scheme
that decomposes the large-scale nonsmooth optimization problem into a series of
smaller-scale smooth subproblems. For each of these subproblems fast numerical
algorithms can be used for computation. Crucial for this solution approach is a
precise identification of the physical structure of the sample path. The algorithm
presented in the last section consequently makes use of the decoupling properties
stated in [PW01]. It proceeds in a backward-recursive manner starting with the last
job in the queue and adding each previous job one by one.

The presented method systematically takes advantage of the structural properties
of hybrid systems. An intelligent analysis of the optimal control problem allows to
avoid the burden of finding a ”general” solution for the hybrid system framework
which is instead solved as a series of independent subproblems.
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