Optimization of Hybrid Control Systems in Manufacturing*

Michael Fall

Institute of Automatic Control Engineering
Technische Universität München

michael.fall@mytum.de

*D. Pepyne and C. Cassandras: Optimal Control of Hybrid Systems in Manufacturing
Content

1. Introduction
2. Modeling of hybrid systems for a single-stage manufacturing process
3. Formulation of the optimal control problem
4. Analysis of the optimization problem
5. Solution of the optimization problem using a Backward Recursive Algorithm
6. Conclusion
Problems related to Manufacturing Processes

- Consider the manufacturing process of a metal-making company:
 - Metal strips undergo various operations during the production process (rolling, milling, machining metals,...)

 Supervisory control: which operations? sequence of operations?

- Example process: oven heating with a defined *heating profile*
 1. Slowly heating of ingots to a desired temperature
 2. Holding the metal-strips at a certain temperature level
 3. Controlled cooling (annealing)

 Time consuming processes to achieve a certain **quality**

 Process related control: When to switch operation times?

Integration of **process control** into the **plant-wide scheduling**.
A Hybrid System Framework for Manufacturing

How to achieve the integration of process control into plant-wide scheduling?

• Suitable *process model* required
 – Trade off job completion times vs. quality aspects
 – Applicable to various processes
 – Deal with discrete events and continuous states

Solution Approach: Introduction of a *Hybrid System Framework*

• Generalization:
 – Representation of certain tasks <-> „Jobs“
 – Devices to process on tasks <-> „Servers“

• *Hybrid* nature of the system
 – Description of physical characteristic (shape, functionality, quality)
 – Description of process start and stop times
General remarks on Hybrid Systems

• Example: A simple thermostat as a hybrid system

Hybrid System: combination of event-driven with time-driven dynamics
– Discrete states: Q={0,1}
– Transitions depending on continuous variables
– In each state: continuous dynamics and constraints $z \in \mathbb{R}^N$

\[\dot{z}(t) = -z(t) + 15 \quad \text{if } z(t) <= 17 \]
\[\dot{z}(t) = -z(t) + 25 \quad \text{if } z(t) >= 22 \]

• In General, various types of modeling framework for hybrid systems:
 – Queuing system framework
 – Extension of event-driven models to allow time-driven activities
Modeling of a Single-Stage Manufacturing Process

- Representation of a manufacturing process as a *single-server queuing system*

 Structure
 - Infinite storage capacity
 - Non-preemptive server

 Queuing discipline
 - First-Come-First-Served Principle (FCFS)

- Queuing system dynamics:

 Physical state:
 Time-driven differential equations during job processing

 Temporal state:
 Discrete event dynamics to describe start and stop times

Goal: To formulate and solve optimal control problems that trade off cost on the physical and temporal states
Control Policy for a Hybrid System Framework

Control Policy:
Determine how the jobs are being processed through the system optimally

(Assume: Job sequence / job arrival times assigned by an external source)

• Sub-problems that need to be solved:

1. Compute control trajectories for optimally steering the physical system state
 \[\rightarrow \text{nonlinear optimal control}\]

2. Choose the optimal processing time for each job
 \[\rightarrow \text{discrete-event dynamic system performance}\]

3. Determine the order of job-processing
4. Consider the sequence of servers for each job
 \[\rightarrow \text{scheduling methods}\]

• All 4 subproblems are tightly coupled together in a hybrid system
Interpretation of the Hybrid System Framework

Discrete event system with time-driven dynamics:

- Time driven dynamics:
 \[\dot{z}_i(t) = g_i(z_i, u_i, t) \]
 \[z_i(\tau_i) = \zeta_i \]

- Event-driven dynamics: evolution of the temporal states
 \[x_i = \tau_i + s_i(u_i) = \max(x_{i-1}, a_i) + s_i(u_i) \]
 \[x_i(t) \]: job completion times
 \[s_i(u_i) \]: processing time
 \[u_i \]: control variable -> time-independent
 \[\zeta_i \]: initial state; \[\tau_i \]: processing start time

\[\dot{z} = g_i(z, u, t) \]
Interpretation of the Hybrid System Framework

- Exogenous (uncontrolled) arrival events, controlled departure events
- Each job must be processed until it reaches a certain quality level

"Stopping rule":

\[s_i(u_i) = \min\{t \geq 0 : z_i(\tau_i + t) = \int_{\tau_i}^{\tau_{i+1}} g_i(s,u_i,t)ds + \zeta_i \in \Gamma_i \} \quad \Gamma_i: \text{desired quality "level"} \]

- Consider Job1:
 - Job arrival time: \(a_1 \)
 - Job removal from the server: \(x_1 \)

\[\dot{z}_1(t) = g_1(z_1,u_1,t) \]

\(a_i: \) job arrival times
\(x_i: \) job completion times
Formulation of the Optimal Control Problem

• Conflicting optimization goals:
 – Quality aspects to satisfy customer demands
 – Job completion deadlines

• Optimal Control objective:
 Choose a control policy \(\pi = \{u_1, \ldots, u_N\} \) to minimize an objective cost function:

\[
\min_{\pi} J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]
\]

\(J: \text{cost function} \)
\(\Theta_i: \text{cost on control } u_i \)
\(\Psi_i: \text{cost on job completion } x_i \)

• Multistage optimization problem
• No explicit cost on \(z_i(t) \), but the stopping rule \(z_i(t) = \Gamma_i \) counts!

Hybrid system framework:
Time/Quality tradeoffs
Formulation of the Optimal Control Problem

Class 1 problems:

- control $u_{(i)}$ is interpreted as the processing time
- $J(\Theta_i, \Psi_i)$ trades off quality vs. Job completion times
- Conditions:
 - Θ_i, Ψ_i: strictly convex, monotonically decreasing
 - $s_i(.)$ is linear with $s_i(u_i) = \alpha u_i$

 Example:

 \[
 s_i(u_i) = u_i \\
 \Theta_i(u_i) = \frac{1}{u_i} \\
 \Psi_i(x_i) = (x_i - \delta_i)^2
 \]

 - Physical state z_i: interpreted as the job-quality
 - Cost on poor quality + cost on missing the due-date
Formulation of the Optimal Control Problem

Class 2 problems:

- control $u(i)$ is interpreted as the effort applied to a job
- $J(\Theta_i, \Psi_i)$ trades off job completion times Θ_i vs. processing speed
- Conditions:
 - Ψ_i strictly convex, monotonically increasing
 - $s_i(.)$ is strictly convex, monotonically decreasing

Example:

\begin{align*}
s_i(u_i) &= \frac{q}{u_i} & q: \text{desired quality level} \\
\Theta_i(u_i) &= u_i^2 & u_i: \text{...e.g. energy} \\
\Psi_i(x_i) &= \begin{cases}
0, & x_i < \delta_i \\
(x_i - \delta_i)^2, & x_i \geq \delta_i
\end{cases} \\
& & x_i: \text{job completion time} \\
& & \delta_i: \text{due date for each job}
\end{align*}

- Quadratic cost on the effort applied to the job (typical approach) + penalizing tardiness

\[
\min J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]
\]
Analysis of the Optimization Problem

Basic variational calculus techniques:

- General Form of the cost function for a discrete-time optimal control problems

\[J(x, \lambda, u) = \sum_{i=1}^{N} \{ L_i(x_i, u_i) + \lambda_i [\max(x_{i-1}, a_i) + s_i(u_i) - x_i] \} \]

\[\lambda: \text{N-dim. vector} \]

for the co-state

- Necessary Conditions for Optimality (maximum principle):

 - Stationary condition:
 \[\frac{\partial J}{\partial u_i} = 0 \Rightarrow \frac{\partial L_i(x_i, u_i)}{\partial u_i} + \lambda_i \frac{ds_i(u_i)}{du_i} = 0 \]

 - State equation:
 \[\frac{\partial J}{\partial \lambda_i} = 0 \Rightarrow x_i = \max(a_i, x_{i-1}) + s_i(u_i) \]

 - Co-state equation:
 \[\frac{\partial J}{\partial x_i} = 0 \Rightarrow \lambda_i = \frac{\partial L(x_i, u_i)}{\partial x_i} + \lambda_{i+1} \frac{d \max(x_i, a_{i+1})}{dx_i} \]
Discussion of possible solutions on the Optimization Problem

• Bellmann Principle / Dynamic Programming (DP)

 – Algorithm based on recursion and memorization
 – Enormous computational effort to search over the whole policy space for jobs $i=1\ldots N$

• Two-point boundary-value problem (TPBVP):

 – Nondifferentiability introduced by event-generation mechanism
 – Consideration of the max function:

\[
\frac{\partial J}{\partial x} = 0 \implies \frac{d}{dx_i} \max(x_i, a_{i+1}) = \begin{cases} 0, & \text{if } x_i < a_{i+1} \\ 1, & \text{if } x_i > a_{i+1} \end{cases} \quad a_i; \text{ job arrival times} \quad x_i; \text{ job completion times}
\]

• First order approximations might end-up in a local minimum

Introduction of Nonsmooth Optimization with Lipschitz-continuous functions.

Analysis of the Optimization Problem
Example for a Nonsmooth Cost Function

- Class-1 Example with N=2

\[
\min J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]
\]

\[
\Theta_1(u_1) = \frac{1}{u_1}; \quad u_2(u_2) = \frac{1}{u_2};
\]

\[
\Psi_1(x_1) = x_1^2, \quad \Psi_2(x_2) = (x_2 - 30)^2
\]

\[
J(u_1, u_2) = \frac{1}{u_1} + \frac{1}{u_2} + (2 + u_1)^2 + [\max(2 + u_1, 3) + u_2 - 30]^2
\]

- Surface is not differentiable across the “crease” where \(x_1 = a_2\)
- \(J(.)\) is not convex! (although \(\Theta_i, \Psi_i\) != strictly convex)
- Points of non-differentiability form a critical component in the analysis
 Goal: Exclusion of these jobs
Example for a Nonsmooth Cost Function

- Introduction of critical jobs:

 A job $i=1\ldots N$ is called critical if $x_i=a_{i+1}$

 - Consequences for the cost function:

 $\frac{\partial J}{\partial \lambda_i} = 0 \implies x_i = \max(a_i, x_{i-1}) + s_i(u_i)$

 - If there are no critical jobs: -> standard gradient-based methods (TPBV-solvers)
 otherwise: -> “Chattering“ across the crease at the minimum
Nonsmooth Optimization

• Objective:
 – To develop a solution that is able to deal with the introduced non-differentiability
 – Optimization of Lipschitz continuous functions

$$| f(x) - f(y) | \leq K | x - y |$$

K: open subset of \(\mathbb{R}^N \)

• Lipschitz functions: are continuous, but need not be differentiable everywhere

$$x_i = \max(x_{i-1}, a_i) + s_i(u_i)$$

is Lipschitz

$$\min_{\pi} J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]$$

is also Lipschitz (\(\Sigma \) theorem)

• In General, Cost Functions in Hybrid Optimal Control problems have discontinuities, but are Lipschitz
Nonsmooth Optimization

How to determine a global extremum?

– Reminder: Continuously differentiable (smooth) functions

 • Necessary condition for a point to be a local extremum: \(\frac{\partial f(x)}{\partial x_i} \neq 0 \)

 • Global extremum: Hesse-Matrix + boundary conditions!

 • Use of gradient-based methods possible

– Lipschitz continuous functions

 • Necessary conditions for the optimum as a generalization of the gradient

 • Introduction of the subdifferential \(\partial f(u) \) of \(f \) at \(u \):

 \[
 \partial f(u) = \{ \partial f(u) \}
 \]

 • Most important property: **if \(u \) is a local extremum of \(f \), then:** \(0 \in \partial f(u) \)

Solving the optimization problem requires deriving an expression for the subdifferential \(J(u_1, \ldots, u_N) \).
Subdifferential Derivation

- Example:

\[
\begin{align*}
\lim_{x \to 0^-} & \frac{\partial f(x)}{\partial x} = -1; \\
\lim_{x \to 0^+} & \frac{\partial f(x)}{\partial x} = +1;
\end{align*}
\]

subdifferential \(\partial f(u) = [-1, 1] \)

0 \in \partial f(u)

How to use the subdifferential in our optimization problem?

- Provides a way to check for the optimal solution
- Event-driven dynamics enable a simple elevation of the subdifferential
- Using the left and right derivatives of \(J(.) \) it can be shown that the optimal control sequence \(u_i \) is unique
Subdifferential Derivation

Helpful definitions when evaluating the subdifferential

- Introduction of a sample path consisting of:
 - departure times in response to given arrival times
 - idle periods
 - busy periods

- Evaluation of the subdifferential $\partial J(u_1, \ldots u_N)$

- Optimal Control Sequence $i=1 \ldots N$ must satisfy: $0 \in [\zeta_i^-, \zeta_i^+] \in \mathbb{R}^1$

\[\zeta_i^- = \lim_{x_{m(i)}+d_{m(i)} \downarrow} \frac{\partial J}{\partial u_i} ; \quad \zeta_i^+ = \lim_{x_{m(i)}+d_{m(i)} \uparrow} \frac{\partial J}{\partial u_i} \]
Decoupling properties

- Decomposition of the optimal state trajectory into fully decoupled segments

\[
\min J = \sum_{i=1}^{N} J_i = \min(\min_{u_1 \ldots u_P} J_{i_1}, \ldots, \min_{u_{P+1} \ldots u_Q} J_{i_{Q-P}}); \quad P,Q < N
\]

- Decoupling properties according to the event-generating mechanism

 - Idle period decoupling property
 - Optimal control \(u_i^* \) : dependent on number of Jobs and on arrival times \(a_i \)
 - Controls \(u_i \) for individual busy periods can be calculated independently

 - Block related decoupling property
 - Controls \(u_i \) for jobs before/after a critical job are independent

- Idea: Solving of the large optimization problem as a series of smaller (independent) subproblems (restrict the number of degrees of freedom)
Critical Job Identification

- For practical problems: Almost any sample path will contain critical jobs
- Considering a busy period containing jobs $i=1...B$ (starting with arrival time a_1)

- **Optimal** job departure times $x_{i,B}$ are only dependent on a_1 and B
 -> Pre-Computation of optimal departure times $x_{i,B}$ is possible! ($i=1,...,B-1$)

- Introduction of the critical interval $[x_{i,B},x_{i,i}]$
 Lemma: if any $a_{i+1} \in [x_{i,B},x_{i,i}]$ then: interval will will include at least one critical job

- Determination of critical jobs:
 Lemma: Depending on job arrival times and on pre-computation optimal times -> statement *whether or not* a job is critical
Critical Job Identification

Example: \textit{job1, \ldots, job3}

- Arrival time of job a_2 relative to the critical interval $[x_{1,2}, x_{1,1}]$ allows to identify whether job1
 1) is critical or not
 2) does end the first busy period
 3) is included in a busy period containing at the least job 1 and 2

\[a_i: \text{ Job arrival times} \]
\[x_{i,B}: \text{Pre-computed optimal job departure times (}i=1\ldots\text{ B-1)} \]

- Number of jobs on the sample path
- Index of the \textit{i-th} job to be processed
Critical Job Identification

Example: \(\text{job}1, \ldots, \text{job}3 \)

\(a_i \): job arrival times
\(x_i \): job completion times

\begin{align*}
\bullet \ & \text{If } a_2 \leq x_{1,3} \&\& a_2 \leq x_{1,3} \\
& \text{and } x_{1,3} \leq a_2 \leq x_{3,3} \quad \{ \text{Job}1 \text{ is critical} \}
\end{align*}

\begin{align*}
\bullet \ & \text{If } x_{1,3} \leq a_2 \leq x_{1,2} \\
& \text{and } x_{2,3} \leq a_3 \leq x_{2,2} \quad \{ \text{a sign-check needs to be implemented:} \ 0 \in [\zeta_i^-, \zeta_i^+] \}
\end{align*}
A Recursive Backward Algorithm

- **Essential Idea:**
 - Decomposition of the overall nonsmooth optimization problem into (smooth) subproblems with reduced dimensionality
 - Use of standard gradient-based solvers for individual subproblems (TPBVP)
 - Calculate each subblock by using terminal constraints (TC)

- **Role of critical jobs (points of non-differentiability)**

 Example

 - Two independent solutions (one for each block)
 - Necessary condition: Identification of the busy period structure

Solution of the Optimization Problem
Determining the busy period structure

Problem: Find a systematic way to identify the busy period structure

- General Approach:
 - Search for the optimal solution over all busy and block periods
 - Exhaustive computational effort:
 - For jobs $N=1...N$: 2^{N-1} different busy period structures
 - 2^{B-1} possible block structures (for jobs $j=1...B$ in a block)
 - Infeasible except for small problems

- Approach by D. Pepyne / C. Cassandras:
 - Identification of the busy period structure by implementing sign-checks
 - Calculation for each job in backward recursive manner
 - Use of efficient gradient-based-methods
A Backward Recursive Algorithm

- Example with N=5 jobs:

 - Class-1 cost with a nonlinear service function $s_i(u_i)$:
 $$\min_{u_1,...,u_5} J = \sum_{i=1}^{5} \left[\frac{1}{u_i} + x_i^2 \right]$$
 \[J: \text{cost Function} \]
 \[\Theta_i: \text{cost on control } u_i \]
 \[\Psi_i: \text{cost on job completion } x_i \]

 - $J(.)$ is strictly convex -> unique global extremum does exist!
 - Input:
 - arrival times $a_1,...,a_5$
 - TCs to identify critical jobs

 - Recursive manner: starting with Job N and adding one by one previous jobs
 - Implementation of the Algorithm using MATLAB
A Backward Recursive Algorithm

1. Initialization: Solve $P_{5,5}(0)$ to obtain u_5^* and x_5^*

2. Introduction of Job 4: calculate optimal control u_4^* and u_5^* (jobs in isolation)

Coupling properties:

- Computation of the Quantities $\zeta_{4,5}$ and $\zeta_{4,5}^+$ sign test
- $\zeta_{4,5}, \zeta_{4,5} > 0$: Decoupling of Job 4+5 into separate busy periods
- Idle Period Decoupling: no need to recalculate u_5^*

3. Introduction of job 3

- $\zeta_{4,5}, \zeta_{4,5} < 0$: Merge of job 3 into busy period of job 4

4. Continue with job 2...
Conclusion

• Solution of a general optimal control problem related to manufacturing processes
• Introduction of a hybrid system framework combining time-driven with event-driven dynamics
• Quality / time tradeoffs related to manufacturing process lead to a nonsmooth optimization problem
• Solution approach: *Divide and Conquer Scheme*

• Extension towards multistage processes
References

• D. Pepyne and C. Cassandras: Optimal Control of Hybrid Systems in Manufacturing

• C. Cassandras, D. Pepyne, Y. Wardi: Optimal Control of a Class of Hybrid Systems
 IEEE Transactions on Automatic Control

• O. Stursberg: Script on lecture „Discrete Event and Hybrid Systems“
 Technical University of Munich