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Introduction to Reinforcement Learning (I)

• Parts of a RL problem

1) (Dynamic) Environment

2) Reward function: r

3) Value function: V (x)3) Value function: V (x)

Action u
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Introduction 3

• “Learning with a critic” (reinforcement learning) in contrast to 

“learning with a teacher” (supervised learning)

Estimator πBelief State b



Introduction to Reinforcement Learning (II)

• Objective

– Learning of the best policy to solve a problem by trial-and-error 

runs

– The best policy (π*) is given by finding a sequence of actions that – The best policy (π*) is given by finding a sequence of actions that 

maximizes the expected cumulative reward V (xt):                                 
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• Example of a deterministic

Markov Decision Process (MDP): x't+1xt+1

xt+2
r(xt+1,ut+1) r(x’t+1,u’t+1)

π'π = π*



Motivation for Hierarchical Architectures 

• Apply RL to real-world problems, e.g. complex machine learning 

systems

– RL methods scale badly with the size of state spaces

– RL methods scale badly with the size of action spaces– RL methods scale badly with the size of action spaces

– RL methods scale badly with the length of policies

• Use hierarchical RL for systems where

– the duration of the learning period matters

– Online learning is required

• Online planning
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• Online planning

• Online adaptation to the environment



Basic Scheme of Hierarchical RL

• Hierarchical architecture of RL refers to

– Multiple levels and/or

– Multiple temporal scales and/or

– Multiple spatial scales– Multiple spatial scales

• Construction of higher levels

– Macro-actions

– Sub-goals

– Multiple time scales
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• Frequently based on Semi Markov Decision Processes (SMDP)



Example: Stand-up Task of a Robot (I)

• Task decomposition by sub-goals as proposed by J. Morimoto and K. 

Doya

– Upper level: exploration of a low-dimensional state space

– Lower level: optimization of local trajectories in the high-

θ0

θ1

link1

– Lower level: optimization of local trajectories in the high-

dimensional state space

• Two-joint, three-link robot

– State variables chosen for the upper level:

X(T) = (θm, θ1, θ2)
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θm

θ2

link2

link3

X(T) = (θm, θ1, θ2)

– State variables used in the lower level:

),,,,,()( 210210 θθθθθθ &&&=tx



Example: Stand-up Task of a Robot (II)

• Episode of a successful stand-up trial

– Upper level

– Lower level
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Example: Stand-up Task of a Robot (III)

• Hierarchical architecture

Abstract State Space

Q(λ)-Learning

RT

UT

• Global exploration of sub-goals
• RT = Rmain + Rsub
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Upper Level Learning

• Learning of a discrete sequence of sub-goals

Abstract State Space

Q(λ)-Learning

RT

UT
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Choice of Actions in the Upper Level

• No perfect knowledge of the environment

– Exploration strategy is required to query the model

– Smooth transition from exploration to exploitation

– Probabilistic choice of an action u at time t (Boltzmann – Probabilistic choice of an action ut at time t (Boltzmann 

distribution):

– With:
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– With:

• β: exploration factor (inverse temperature)

• A(x): set of possible actions at state x



Q(λ)-Learning (I)

• Used for (general) Markov Decision Processes (MDP)

– Set of potential successor states for a given action in a given 

state

– Value iteration is not applicable in practise– Value iteration is not applicable in practise

• Value function V(xt) is replaced by Q-function Q(xt,ut)

– Q-function is frequently used in the context of control

– The state value V*(xt) and the expected accumulated reward 

Q*(xt,ut) of an action ut taken in state xt are linked by:

[ ]
∞ 
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• : discount factor to keep future rewards discounted for infinite 
horizon models

10 <≤ γ
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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– Example: α=0.1, γ=0.9
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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– Example: α=0.1, γ=0.9
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:





 −⋅+⋅+← ),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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– Example: α=0.1, γ=0.9
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:
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Q(λ)-Learning (III)

• λ≠0: Update the values of previously occurring visits 

• Accumulating eligibility trace e(x):




+⋅⋅

⋅⋅
=+

)(
)(1

xe
xe

t

t
λγ

λγ , if x≠xt

1

1.5
Visits of a state

0.8

1

1.2

1.4
Accumulating Trace (gamma=0.5, lambda=0.9)

– 0≤λ≤1: trace decay parameter




+⋅⋅
=+

1)(
)(1

xe
xe

t

t
λγ , if x=xt

0 5 10 15 20 25 30 35

0.5

time

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

time

Decomposition by sub-goals → Upper Level 21



Lower Level Learning

• Learning of local trajectories

Abstract State Space

Q(λ)-Learning
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Choice of Actions in the Lower Level

• Continuous action-space in the lower level requires a different 

exploration strategy

• Usage of normalized Gaussian basis functions instead of a • Usage of normalized Gaussian basis functions instead of a 

Boltzmann distribution in order to select actions

– Continuous function approximator (here: learning of local 

trajectories)

– Learning of non-linear functions (here: non-linear control function)

– Frequently converges to local optima (here: global exploration of 

the state space in the upper level)
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the state space in the upper level)



Continuous TD(λ)-Learning with Actor-Critic Method (I)

• Actor-critic method uses two function approximators:

– Critic learns the state-value function that predicts the 

accumulated future reward V(xt) at state xt

– Actor learns the control functions f(x ) that specify non-linear – Actor learns the control functions f(xt) that specify non-linear 

feedback control laws

RobotCritic

state xt

reward r

V(xt)
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Continuous TD(λ)-Learning with Actor-Critic Method (II)

• Update rule for continuous Temporal-Difference (TD) Learning

–

• with the state-value prediction error

tt gw ⋅⋅= δα&

– δt: Hamiltonian, e.g. continuous equivalent to Bellman’s residual

– : time factor

• α: learning rate

• gt:

– Update of the actor: normalized Gaussian basis function weighted with 

dt
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– Update of the actor: normalized Gaussian basis function weighted with 
a noise term for exploration

– Update of the critic: eligibility trace of a basis function



Evaluation (I)

• Increase of the learning speed and the success rate of the approach 

successfully demonstrated in simulations

• Simulation results successfully transferred to a real robot that has to • Simulation results successfully transferred to a real robot that has to 

accomplish the stand-up task

• Task-specific optimization of parameters required

– Choice of an appropriate subset of state variables for the upper 

level

– Choice of an appropriate action step size
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– Choice of an appropriate action step size

– Choice of an appropriate reward function

– Experimentation-sensitivity of trace-decay parameters



Evaluation (II)

• No formal convergence proof exists

– Policy might be sub-optimal when combining the sub-problems

• A-priori information can be easily included• A-priori information can be easily included

• Approaches providing reusability for several tasks

– Refers to lower-level modules

– Compositional Q-Learning [S. Singh]

– Nested Q-Learning [B.L. Digney]
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Further Approaches in hierarchical RL (I)

• Options-formalism [Sutton et al.]

– Generalization of actions to include courses of actions

– Execution of an option:

• Policy π determines which actions are selected from the input set S• Policy π determines which actions are selected from the input set S

• Option is terminated stochastically according to the termination condition β

• Hierarchies of Abstract Machines (HAMs) [Parr et al.]

– Supervisor in the higher level that intervenes when its state enters 

a set of boundary states

– Switching between several regulators in the lower level

• MAXQ framework [Dieterrich]
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• MAXQ framework [Dieterrich]

– Decomposition of a MDP into a set of subtasks

• Hierarchy of SMDPs whose solutions can be learned simultaneously

• Hierarchical architecture can be represented in a task graph



Further Approaches in hierarchical RL (II)

• Dynamic Abstraction

– Temporally-extended activities assess which variables have to be 

considered

– Learning to set up task hierarchies automatically– Learning to set up task hierarchies automatically

– Representative: HEXQ

• Construction of a task
hierarchy using HEXQ
(after Hengst)
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Conclusion

• High practical importance to real world problems

– Reasonable learning speed

– Can deal with high-dimensional state spaces

– Provide reusability (some approaches)– Provide reusability (some approaches)

• Various hierarchical approaches exist

– Application-specific optimization of RL architectures

– Convergence to optimal policy not always guaranteed

• Issue of recent research

– Dynamic abstractions

Conclusion 30

– Concurrent activities

– Multi-agent strategies
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