
Hierarchical Reinforcement Learning

Susanne SchlötzerSusanne Schlötzer

Institute of Automatic Control Engineering
Technische Universität München

susanne.schloetzer@mytum.de

Joint Advanced Student School 2008

Content

• Introduction to Reinforcement Learning (RL)

• Motivation for hierarchical architectures

• Basic scheme of hierarchical RL

• Task decomposition by sub-goals• Task decomposition by sub-goals

– Stand-up task of a robot

– Learning in the upper-level

– Learning in the lower-level

– Evaluation

• Further hierarchical approaches in RL

Content 2

• Conclusion

Introduction to Reinforcement Learning (I)

• Parts of a RL problem

1) (Dynamic) Environment

2) Reward function: r

3) Value function: V (x)3) Value function: V (x)

Action u

ENVIRONMENT

AGENT

Reward / Penalty

r(x,u)

State x

State

Estimator

Policy

πBelief State b

Introduction 3

• “Learning with a critic” (reinforcement learning) in contrast to

“learning with a teacher” (supervised learning)

Estimator πBelief State b

Introduction to Reinforcement Learning (II)

• Objective

– Learning of the best policy to solve a problem by trial-and-error

runs

– The best policy (π*) is given by finding a sequence of actions that – The best policy (π*) is given by finding a sequence of actions that

maximizes the expected cumulative reward V (xt):

•

•

• Example of a deterministic

() ()tt xVxV
π

π
max

* = , tx∀

()

⋅Ε= ∑

∞

=

+
−

1

1

i

it

i

t rxV γπ

xt
r(xt,ut) r(xt,u’t)

Introduction 4

• Example of a deterministic

Markov Decision Process (MDP): x't+1xt+1

xt+2
r(xt+1,ut+1) r(x’t+1,u’t+1)

π'π = π*

Motivation for Hierarchical Architectures

• Apply RL to real-world problems, e.g. complex machine learning

systems

– RL methods scale badly with the size of state spaces

– RL methods scale badly with the size of action spaces– RL methods scale badly with the size of action spaces

– RL methods scale badly with the length of policies

• Use hierarchical RL for systems where

– the duration of the learning period matters

– Online learning is required

• Online planning

Motivation 5

• Online planning

• Online adaptation to the environment

Basic Scheme of Hierarchical RL

• Hierarchical architecture of RL refers to

– Multiple levels and/or

– Multiple temporal scales and/or

– Multiple spatial scales– Multiple spatial scales

• Construction of higher levels

– Macro-actions

– Sub-goals

– Multiple time scales

Basic Scheme 6

• Frequently based on Semi Markov Decision Processes (SMDP)

Example: Stand-up Task of a Robot (I)

• Task decomposition by sub-goals as proposed by J. Morimoto and K.

Doya

– Upper level: exploration of a low-dimensional state space

– Lower level: optimization of local trajectories in the high-

θ0

θ1

link1

– Lower level: optimization of local trajectories in the high-

dimensional state space

• Two-joint, three-link robot

– State variables chosen for the upper level:

X(T) = (θm, θ1, θ2)

Decomposition by sub-goals → Example 7

θm

θ2

link2

link3

X(T) = (θm, θ1, θ2)

– State variables used in the lower level:

),,,,,()(210210 θθθθθθ &&&=tx

Example: Stand-up Task of a Robot (II)

• Episode of a successful stand-up trial

– Upper level

– Lower level

Decomposition by sub-goals → Example 8

Example: Stand-up Task of a Robot (III)

• Hierarchical architecture

Abstract State Space

Q(λ)-Learning

RT

UT

• Global exploration of sub-goals
• RT = Rmain + Rsub

=
1

Rmain

, on success of stand-up

Upper Level

Physical State Space

continuous

TD(λ)-Learning

+

Reward rt

Trigger

- switching

UT

+⋅=

=

0

125.0

1

0

L

Y
R

R

sub

main
, on failure

, sub-goal achieved

, final goal achieved

, on failure

• Optimization of local trajectories

1

~

exp)
~

,(
2

2

−

 −
−=

θθ
θθ

s
r , during control

Decomposition by sub-goals → Example 9

idle

idle

Lower Level

Robot

Controller

xt ut

1exp),(
2

−

−=
θ

θθ
s

r

−

−

−
=

5.1

~

exp
)(2

2

θ

θθ

&

&&

str
, sub-goal achieved

, fall down

Upper Level Learning

• Learning of a discrete sequence of sub-goals

Abstract State Space

Q(λ)-Learning

RT

UT

Upper Level

Physical State Space

continuous

TD(λ)-Learning

+

Reward rt

Trigger

- switching

UT

Decomposition by sub-goals → Upper Level 10

idle

idle

Lower Level

Robot

Controller

xt ut

Choice of Actions in the Upper Level

• No perfect knowledge of the environment

– Exploration strategy is required to query the model

– Smooth transition from exploration to exploitation

– Probabilistic choice of an action u at time t (Boltzmann – Probabilistic choice of an action ut at time t (Boltzmann

distribution):

– With:

[]

[]∑
Α∈

⋅Ε

⋅Ε
=

)(

),(

),(
)|(

xb

t

tt
tt

bxQ

uxQ
xuP

β

β

Decomposition by sub-goals → Upper Level 11

– With:

• β: exploration factor (inverse temperature)

• A(x): set of possible actions at state x

Q(λ)-Learning (I)

• Used for (general) Markov Decision Processes (MDP)

– Set of potential successor states for a given action in a given

state

– Value iteration is not applicable in practise– Value iteration is not applicable in practise

• Value function V(xt) is replaced by Q-function Q(xt,ut)

– Q-function is frequently used in the context of control

– The state value V*(xt) and the expected accumulated reward

Q*(xt,ut) of an action ut taken in state xt are linked by:

[]
∞

Decomposition by sub-goals → Upper Level 12

• : discount factor to keep future rewards discounted for infinite
horizon models

10 <≤ γ

[])(*maxmax),(*max)(11

1

1

1*

++

∞

=

+
− ⋅+Ε=

⋅Ε== ∑ tt

u
i

t

i

u
tt

u
t xVrruxQxV

ttt

γγ

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

00

00

−−−−

−−−

B

A

EDCBAState/Action

Decomposition by sub-goals → Upper Level 13

B0 100

0

0

0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

10

00

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 14

B0 100

0

0

0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

10

09.0

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 15

B0 100

0

0

0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

19

09.0

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 16

B0 100

0

0

0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

19

09.0

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 17

B0 100

0

10

0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

19

09.0

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 18

B0 100

0

19

9.0

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

19

081.09.0

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 19

B0 100

0

27

52.2

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (II)

• Special case: Q(0)-learning, e.g. one-step Q-learning

• Update rule for Q(0)-learning with the learning rate α:

 −⋅+⋅+←),()','(max),(),(

'
uxQuxQruxQuxQ

u
γα

– Example: α=0.1, γ=0.9

 'u

A

C D

E

0 0
100

0

State/Action

100

8190

−−−−

−−−

B

A

EDCBA

Decomposition by sub-goals → Upper Level 20

B0 100

0

100

90

−−−−

−−−−

−−−−

E

D

C

Q(λ)-Learning (III)

• λ≠0: Update the values of previously occurring visits

• Accumulating eligibility trace e(x):

+⋅⋅

⋅⋅
=+

)(
)(1

xe
xe

t

t
λγ

λγ , if x≠xt

1

1.5
Visits of a state

0.8

1

1.2

1.4
Accumulating Trace (gamma=0.5, lambda=0.9)

– 0≤λ≤1: trace decay parameter

+⋅⋅
=+

1)(
)(1

xe
xe

t

t
λγ , if x=xt

0 5 10 15 20 25 30 35

0.5

time

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

time

Decomposition by sub-goals → Upper Level 21

Lower Level Learning

• Learning of local trajectories

Abstract State Space

Q(λ)-Learning

RT

UT

Upper Level

Physical State Space

continuous

TD(λ)-Learning

+

Reward rt

Trigger

- switching

UT

Decomposition by sub-goals → Lower Level 22

idle

idle

Lower Level

Robot

Controller

xt ut

Choice of Actions in the Lower Level

• Continuous action-space in the lower level requires a different

exploration strategy

• Usage of normalized Gaussian basis functions instead of a • Usage of normalized Gaussian basis functions instead of a

Boltzmann distribution in order to select actions

– Continuous function approximator (here: learning of local

trajectories)

– Learning of non-linear functions (here: non-linear control function)

– Frequently converges to local optima (here: global exploration of

the state space in the upper level)

Decomposition by sub-goals → Lower Level 23

the state space in the upper level)

Continuous TD(λ)-Learning with Actor-Critic Method (I)

• Actor-critic method uses two function approximators:

– Critic learns the state-value function that predicts the

accumulated future reward V(xt) at state xt

– Actor learns the control functions f(x) that specify non-linear – Actor learns the control functions f(xt) that specify non-linear

feedback control laws

RobotCritic

state xt

reward r

V(xt)

Decomposition by sub-goals → Lower Level 24

action ut

Controller

Actor

f(xt)

Continuous TD(λ)-Learning with Actor-Critic Method (II)

• Update rule for continuous Temporal-Difference (TD) Learning

–

• with the state-value prediction error

tt gw ⋅⋅= δα&

– δt: Hamiltonian, e.g. continuous equivalent to Bellman’s residual

– : time factor

• α: learning rate

• gt:

– Update of the actor: normalized Gaussian basis function weighted with

dt

xdV
xVr t

ttt

)(
)(

1
+⋅−=

τ
δ

τ

Decomposition by sub-goals → Lower Level 25

– Update of the actor: normalized Gaussian basis function weighted with
a noise term for exploration

– Update of the critic: eligibility trace of a basis function

Evaluation (I)

• Increase of the learning speed and the success rate of the approach

successfully demonstrated in simulations

• Simulation results successfully transferred to a real robot that has to • Simulation results successfully transferred to a real robot that has to

accomplish the stand-up task

• Task-specific optimization of parameters required

– Choice of an appropriate subset of state variables for the upper

level

– Choice of an appropriate action step size

Decomposition by sub-goals → Evaluation 26

– Choice of an appropriate action step size

– Choice of an appropriate reward function

– Experimentation-sensitivity of trace-decay parameters

Evaluation (II)

• No formal convergence proof exists

– Policy might be sub-optimal when combining the sub-problems

• A-priori information can be easily included• A-priori information can be easily included

• Approaches providing reusability for several tasks

– Refers to lower-level modules

– Compositional Q-Learning [S. Singh]

– Nested Q-Learning [B.L. Digney]

Decomposition by sub-goals → Evaluation 27

Further Approaches in hierarchical RL (I)

• Options-formalism [Sutton et al.]

– Generalization of actions to include courses of actions

– Execution of an option:

• Policy π determines which actions are selected from the input set S• Policy π determines which actions are selected from the input set S

• Option is terminated stochastically according to the termination condition β

• Hierarchies of Abstract Machines (HAMs) [Parr et al.]

– Supervisor in the higher level that intervenes when its state enters

a set of boundary states

– Switching between several regulators in the lower level

• MAXQ framework [Dieterrich]

Decomposition by sub-goals → Evaluation 28

• MAXQ framework [Dieterrich]

– Decomposition of a MDP into a set of subtasks

• Hierarchy of SMDPs whose solutions can be learned simultaneously

• Hierarchical architecture can be represented in a task graph

Further Approaches in hierarchical RL (II)

• Dynamic Abstraction

– Temporally-extended activities assess which variables have to be

considered

– Learning to set up task hierarchies automatically– Learning to set up task hierarchies automatically

– Representative: HEXQ

• Construction of a task
hierarchy using HEXQ
(after Hengst)

Further Approaches 29

Conclusion

• High practical importance to real world problems

– Reasonable learning speed

– Can deal with high-dimensional state spaces

– Provide reusability (some approaches)– Provide reusability (some approaches)

• Various hierarchical approaches exist

– Application-specific optimization of RL architectures

– Convergence to optimal policy not always guaranteed

• Issue of recent research

– Dynamic abstractions

Conclusion 30

– Concurrent activities

– Multi-agent strategies

References

• J. Morimoto, K. Doya. (2001). Acquisition of stand-up behavior by a

real robot using hierarchical reinforcement learning. Elsevier

Science, Robotics and Autonomous Systems, vol. 36, pp. 37-51.

• H. Miyamoto, J. Morimoto, K. Doya, M. Kawato. (2004).• H. Miyamoto, J. Morimoto, K. Doya, M. Kawato. (2004).

Reinforcement learning with via-point representation. Elsevier

Science, Neural Networks, vol. 17, pp. 299-305.

• E. Alpaydin. (2004). Introduction to Machine Learning. MIT Press,

Cambridge, Massachusetts.

• L.P. Kaelbling. (1996). Recent Advances in Reinforcement Learning.

Kluwer academic publishers, Boston, Dordrecht, London.

• A.G. Barto, S. Mahadevan. (2003). Recent Advances in Hierarchical

Reinforcement Learning. Kluwer Academic Publishers. Discrete

Event Dynamic Systems: Theory and Application, vol. 13, pp. 41-77.

31

