

Growth and Properties of Semiconductor Nanowires

Jochen Bruckbauer

Walter Schottky Institut Technische Universität München

Joint Advanced Student School 2008 Frontiers of Semiconductor Nanoscience

> March, 2008 St. Petersburg, Russia

Outline

- Introduction
- 2 Synthesis
- **3** Properties and Applications
- 4 Catalyst-free self-assembled Growth of ZnO Nanoneedles

Introduction

There's Plenty of Room at the Bottom

Richard P. Feynman (1918-1988)

Lecture given at an American Physical Society meeting at Caltech on December 29 in 1959.

From Vases to Church Windows

Lycurgus cup (British Museum): A) illumination from the front, B) from behind

Cathedral of Freiburg

What is nano?

Density of states from 3D to 0D

Nanotechnology: from the atom to structures of up to 100 $\ensuremath{\mathsf{nm}}$

nano from nanos (greek: dwarf)

Quantum size effects:

- confinement leads to quantum effects (e.g. energy states become quantized)
- density of states:

DOS 3D:
$$D_{3D} = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{\frac{3}{2}} \cdot E^{\frac{1}{2}}$$

DOS 1D: $D_{1D} = \frac{(2m^*)}{\pi\hbar} \cdot \frac{1}{F^{\frac{1}{2}}}$

Synthesis

Synthesis Overview

- Vapor Phase Epitaxy
- 2 Vapor-Liquid-Solid Method
- 3 Solution-Liquid-Solid Method
- Pseudo"-Nanowires
- **5** ...

Vapor Phase Epitaxy

- most extensive explored approach for whiskers, nanorods and belts
- possible for any solid material by controlling the supersaturation, which influences the form and morphology (low: whiskers, medium: bulk crystal, high: powder)
- observation as early as 1921 by Volmer and Estermann: Hg nanofibers
- most products are oxides due to inevitable amounts of O_2 in the system
- major advantage: simplicity and accessibility

Vapor Phase Epitaxy

- typical process:
 - generation of vapor species (evaporation, reduction,...)
 - transport of this species to the surface of the substrate with lower temperature
 - with proper control of the supersaturation one can obtain 1D nanostructures

Vapor Phase Epitaxy

- Si₃N₄, SiC, Ga₂O₃ and ZnO nanowires by heating commercial powder of these materials (circular or square cross-section)
- nanobelts or -ribbons with rectangular cross-section: evaporation of commercial metal oxide powder at elevated temperatures
- diameter: 30-300 nm, length: several mm

SnO₂ nanobelt: A) SEM image, B) XTEM image

Vapor-Liquid-Solid Method

- most successful method for generating nanowires with single-crystalline structures
- developed by Wagner et. al. in 1960s for micrometer-sized whiskers
- typical VLS process:
 - dissolution of gaseous reactants in nanosized liquid droplets of a catalysts metal
 - generation of vapor species (laser ablation, thermal evaporation, arc discharge)
 - nucleation
 - growth of single-crystalline rods and then wires

Vapor-Liquid-Solid Method

- growth is induced and dictated by the liquid catalyst droplet
- size remains unchanged during growth
- droplet strictly limits lateral growth
- requirement: good solvent capability between liquid alloy and target material (formation of eutectic compound)
- after supersaturation of liquid droplet growth at solid-liquid interface starts
- vapor pressure low enough to suppress secondary nucleation

Ge nanowires on Au nanocluster:

- diameter of the order of 10 nm and length scale over 1 $\mu{\rm m}$

A) SEM, B) TEM (inset: AU tip), C) atomically resolved TEM

Vapor-Liquid-Solid Method

Problems of VLS:

- selection of the appropriate catalyst
- impossible to apply VLS to metals
- metal as a catalyst may contaminate the nanowires

Solution-Liquid-Solid Method

- similar to VLS
- developed for highly crystalline nanowires of III-V semiconductors at low temperatures
- procedure:
 - metal (e.g. In, Sn, Bi) with low melting point as catalyst
 - decomposition of organometallic precursors to get desired species
- whiskers or filaments are produced (lateral dimension: 10-150 nm, length: several μ m)

"Pseudo"-Nanowires

Top-down approach: formation via lithography and etching:

formation of 2D quantum well

creation of pattern

coating with photo-resist

subsequent etching

Properties and Applications

Thermal Stability

Welding of two Ge nanowires (TEM images, 10-100 nm thickness)

- melting point is reduced with decreasing size
- consequence:
 - annealing temperature much lower for healing
 - integration in functional devices and circuitry (cutting, interconnecting, welding)
 - sensitivity to environmental changes (e.g. temperature or stress fluctuation)

Electron Transport Properties

- due to the decrease of the critical dimensions the electron transport properties become an important issue for study
- because of size reduction extra quantum effects arise
- some metal NW undergo a transition to become semiconducting as their diameter is reduced (e.g. Bi)
- conductivity is much less than bulk material and quantized $\left(\frac{2e^2}{h}\right)$
- ballistic transport occurs in nanowires

Optical Properties

- light emitted from nanowires is strongly polarized along their longitudinal axis
- absorption edge of nanowires is blue-shifted (higher energies) with decreasing diameter
- additionally there are sharp, discrete features in absorption spectra
- a possible explanation include quantum-confined effects (although surface states may contribute additional features)

Lasing in Semiconductor Nanowires

• nanowires with flat ends are utilized as optical resonance cavities

Example: room-temperature UV lasing of ZnO

- ZnO grown on sapphire with VLS
- high exciton binding energy, wide bandgap
- nanorod serves as good optical cavity because of the refractive index of sapphire, ZnO (highest) and air
- nanowire is pumped by a Nd:YAG laser
- light emission occurs normal to the end of the wire

Sensing Applications

- sensing of important molecules
- high electrical sensitivity due to high surface-to-volume ratios

Example: Copper sensor

- arrays of Cu nanowires containing nanoscale gaps
- adsorption of organic molecules reduced the quantized conductance
- reason: scattering of the conduction electrons by the adsorbate

Axial NW Heterostructures I

- variation of the composition and/or doping modulation along the axis
- integrating controlled device functions into nanowires
- no additional lithography steps are necessary
- procedure: switching the reacting species during growth

Axial NW Heterostructures II

Nanoscale LED (n-InP/p-InP)

Modulation of GaAs and GaP

Radial NW Heterostructures I

- radial composition/doping may enhance the performance
- first, growth of a nanowire
- second, change the conditions in order to favor shell growth

Radial NW Heterostructures II

GaN/AIN/AIGaN NWFETs

Ge/Si core-shell NWFETs

Catalyst-free self-assembled Growth of ZnO Nanoneedles

Properties of ZnO

- II-VI semiconductor
- Wurtzite structure

- direct wide bandgap of 3.4 eV
- high exciton binding energy $(\approx 60 \text{ meV})$
- strong tendency to selforganized growth due to polar surfaces

PAMBE Growth

- substrate temperature $T_S=350~^\circ\mathrm{C}$
- a-plane sapphire
- Zn beam equivalent pressure $BEP(Zn) = 2 \cdot 10^{-6}$ mbar
- plasma power $P(O_2) = 250 \text{ W}$ @ 0.5 sccm

Our PAMBE System

Scanning Electron Microscopy (SEM)

increased Zn flux

• influence on nucleation and shape

Growth Time

Scanning Electron Microscopy (SEM)

- immediate nucleation
- almost constant density
- time-dependent growth rate

High Resolution X-Ray Diffraction

$$(n \cdot \lambda = 2d \cdot \sin \theta)$$

Epitaxial Relationship

High Resolution X-Ray Diffraction (HRXRD)

- $\rm Al_2O_3[11\bar{2}0] \parallel ZnO[0001]$ and $\rm Al_2O_3[0001] \parallel ZnO[11\bar{2}0]$
- same as for continuous layer

- wetting layer is formed during growth process
- isolated nanoneedles show tapered basis

TEM Part II

- walls of the nanoneedles relatively rough
- good structural quality
- tip diameter (pprox 3 nm)

L

Growth Rate and Model

- high vertical growth rate compared to continuous layer (2-3 nm/min)
- low lateral growth rate due to high mobility on side-walls and Zn-rich conditions
- decrease in growth rate with increasing growth time due to limited desorption time

Photoluminescence (PL)

- relative intensity of bound excitons change
- weak deep luminescence

Round Up

- Synthesis:
 - bottom-up: CVD, VLS, SLS, MBE, ...
 - top-down: lithography and etching, ...
- Due to the different properties there are plenty of applications:
 - semiconducting devices (FETs, p-n junctions, ...)
 - gas sensors
 - lasing
 - light emitting diodes
- Our current research: ZnO nanoneedles

спасибо

(Thank you for your attention!)

