Numerical Simulation Of Noise Generation And Propagation In Turbo Machinery

Sascha Seidl

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR MASCHINENBAU Lehrst. für Fluidmechanik · Abtl. für Hydraulische Maschinen O. PROF. DR. ING. HABIL. RUDOLF SCHILLING

JASS 2008, Saint Petersburg, Russia

CONTENT

2 ACOUSTIC MODELS

- The Lighthill Analogy
- Expansion About Incompressible Flow By Hardin & Pope

3 NUMERICAL SIMULATIONS

- Overview
- Radial Pump
- Axial Pump

AEROACOUSTICS

AEROACOUSTICS

The field of Aeroacoustics is that part of fluid dynamics, where sound generation and propagation in a moving medium are studied.

DEFINITION OF SOUND

- Sound is represented as density disturbances in the flow field
- Disturbances propagate as waves over large distances through a medium like fluids, gases or solids
- Sound waves can be perceived by the hearing sense of a human being

Sound and Noise

Sound is a change in pressure with respect to atmosphere, whereas noise is unwanted sound.

DIRECT NUMERICAL SIMULATION

One possibility for computation is the direct approach:

- Direct numerical simulation of complete compressible Navier-Stokes equations requires immense computational effort Go to DNS
- Extreme fine grid resolution because of great differences in length and energy scales between hydrodynamic and acoustic field
- ⇒ Development of **hybrid methods**, which split noise calculation into
 - computation of the flow field
 - computation of the acoustic field

HYBRID APPROACH

- Splits the computational domain into two parts, the governing flow field and the acoustic field
- Enables usage of different numerical solvers
 - dedicated CFD tool
 - acoustic solver
- The solution of the flow field is then used as input for the second solver, which calculates the acoustical propagation

CONSIDERATION OF TWO HYBRID METHODS

This talk introduces two different hybrid methods:

- An integral method based on the Lighthill analogy
- Expansion about Incompressible Flow, developed by Hardin & Pope

CONSIDERATION OF TWO HYBRID METHODS

This talk introduces two different hybrid methods:

- An integral method based on the Lighthill analogy
- Expansion about Incompressible Flow, developed by Hardin & Pope

CONSIDERATION OF TWO HYBRID METHODS

This talk introduces two different hybrid methods:

- An integral method based on the Lighthill analogy
- Expansion about Incompressible Flow, developed by Hardin & Pope

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

CONTENT

2 ACOUSTIC MODELS

- The Lighthill Analogy
- Expansion About Incompressible Flow By Hardin & Pope

3 NUMERICAL SIMULATIONS

- Overview
- Radial Pump
- Axial Pump

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

MULTIPOLE SOURCES

Noise, as a result of flow interacting with rotating surfaces, is described by 3 kinds of sources

- Monopoles: thickness noise, i.e. the surface distribution due to the volume displacement of fluid during the motion of the surfaces
- Dipoles: loading noise, i.e. surface distribution due to the interaction of flow with moving bodies
- Quadrupoles: vortex noise, i.e. field distribution due to flow outside the surfaces

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

LIGHTHILL'S POINT OF DEPARTURE

- Lighthill reformulated the compressible Navier-Stokes equations
- He derived a linear wave equation with a quadrupole-like source term, which includes a pressure and density contribution

LIGHTHILL ANALOGY

According to the Lighthill analogy, the noise due to an unsteady flow is equivalent to the noise, that is generated by equivalent quadrupole sources radiating in a medium at rest!

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

EXTENSIONS TO THE LIGHTHILL MODEL

- Extension in order to handle the influence of solid boundaries upon aerodynamic sound
- Noise, due to a flow passing by a body, is equivalent to noise generated by dipoles on the surfaces and quadrupoles outside the surfaces

Pfowcs-Williams and Hawkings

- Extension to handle the interaction of flow with rotating surfaces
- Introduction of mathematical surfaces, that coincide with surfaces of the moving solid, and imposing boundary conditions on it

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

DERIVATION OF THE ACOUSTIC EQUATION PART I

Consider the compressible Navier-Stokes equations (without energy equation)

conservation of mass

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = q$$

conservation of momentum

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + f_i$$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

DERIVATION OF THE ACOUSTIC EQUATION PART II

- By
 - differentiating the continuity equation with respect to time
 - differentiating the conservation of momentum equation with respect to x_i
 - subtract the latter from the first
- One gets the acoustic wave equation

$$\frac{\partial^2 \rho}{\partial t^2} - \frac{\partial^2 p}{\partial x_i^2} = \frac{\partial q}{\partial t} - \frac{\partial f_i}{\partial x_i} + \frac{\partial^2}{\partial x_i \partial x_j} \left(\rho u_i u_j \right)$$

Using a perturbation ansatz for linearisation

$$\begin{array}{rcl}
\rho &=& \rho_0 + \rho' \\
\rho &=& \rho_0 + \rho'
\end{array}$$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

LIGHTHILL'S ACOUSTIC EQUATION

$$\frac{\partial^2 \rho'}{\partial t^2} - a_s^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \underbrace{\frac{\partial q}{\partial t}}_{(1)} - \underbrace{\frac{\partial f_i}{\partial x_i}}_{(2)} + \underbrace{\frac{\partial^2 \tau_{ij}}{\partial x_i \partial x_j}}_{(3)}$$

- Monopoles
- 2 Dipoles
- Quadrupoles

The situation of a flow interacting with a rotating surface is equivalent to an acoustic medium at rest containing 3 source distributions!

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

CONTENT

- **2** ACOUSTIC MODELS
 - The Lighthill Analogy
 - Expansion About Incompressible Flow By Hardin & Pope
- **3** NUMERICAL SIMULATIONS
 - Overview
 - Radial Pump
 - Axial Pump

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

THE HYDRODYNAMIC EQUATIONS

- Consider viscous flow with Ma < 0.3
- Motion of fluid is described by compressible Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0$$

$$\frac{\partial (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j + p_{ij} - f_{viscous})}{\partial x_j} = 0$$

$$p = p(\rho, S)$$

$$\rho T \frac{DS}{Dt} = \rho c_p \frac{DT}{Dt} - \beta T \frac{D\rho}{Dt} = \rho \phi + \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right)$$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

THE INCOMPRESSIBLE SOLUTION

- For EIF it is assumed that the fluid flow is at rest (constant density ρ₀ and constant pressure p₀)
- The incompressible solution is obtained by the incompressible Navier-Stokes equations

$$\begin{aligned} \frac{\partial U_i}{\partial x_i} &= 0, \\ \frac{\partial U_i}{\partial t} + \frac{\partial (U_i U_j)}{\partial x_j} &= -\frac{1}{\rho_0} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_j^2} \end{aligned}$$

- P : incompressible pressure
- ρ_0 : incompressible density
- U_i : velocity components

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

PRESSURE CHANGE

• The pressure change from ambient pressure p₀ is given by

$$dp = P - p_0$$

$$\Rightarrow dp = \left(\frac{\partial p}{\partial \rho}\right)_S d\rho + \left(\frac{\partial p}{\partial S}\right)_\rho dS = a_s^2 d\rho + \left(\frac{\partial p}{\partial S}\right)_\rho dS$$
Speed of sound: $a_s = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_S}$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

ELIMINATING THE ENERGY EQUATION

Introduce time-averaged incompr. pressure distribution

$$\bar{P}(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T P(x, t) dt$$

 Under the assumption of isentropic pressure fluctuations in time p - P
, it is

$$p(
ho, S) = p^*(
ho) + \overline{P}(S)$$

• Therefore \bar{P} involves losses, p^* is assumed to be isentropic

$$\frac{\partial \boldsymbol{p}}{\partial t} = \frac{\partial \boldsymbol{p}^*}{\partial t} = \frac{d\boldsymbol{p}^*}{d\rho} \frac{\partial \rho}{\partial t} = \left(\frac{\partial \boldsymbol{p}}{\partial \rho}\right)_{\mathcal{S}} \frac{\partial \rho}{\partial t} = \boldsymbol{a}_{\mathcal{S}}^2 \frac{\partial \rho}{\partial t}$$

⇒ Because of the isentropic assumption there is no need for an energy equation in acoustic description

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

AN APPROACH BY HARDIN & POPE

- Hardin & Pope proposed a nonlinear two-step procedure
- Suitable for both noise generation and propagation
- Decouples the flow field into
 - incompressible viscous flow field
 - compressible inviscid acoustic field
- Correction to the constant hydrodynamic density is used
- ⇒ Acoustic radiation is obtained from numerical solution of a system of perturbed, compressible and inviscid equations

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

DECOMPOSITION OF THE COMPRESSIBLE SOLUTION

$$\begin{array}{rcl} u_{i}(x_{i},t) & = & U_{i}(x_{i},t) & + & u_{i}'(x_{i},t) \\ p(x_{i},t) & = & P(x_{i},t) & + & p'(x_{i},t) \\ \underline{\rho(x_{i},t)} & = & \underline{\rho_{0}(x_{i},t)} & + & \underline{\rho'(x_{i},t)} \\ \underline{(1)} & & \underline{(2)} & & \underline{(3)} \end{array}$$

- Exact numerical solution of the fluiddynamic and acoustic problem
- Output the second se
- Acoustic quantities, sound propagation
- **Note:** For compressible flows with $Ma \le 0.3$ it can be set $\rho_0 = \text{const.}$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

DERIVATION OF THE ACOUSTIC EQUATIONS

- Insert decomposition into hydrodynamic equations
- Neglect terms of viscosity on the fluctuations
- Obtain first-order nonlinear system of acoustic equations Go to Derivation

$$\begin{aligned} \frac{\partial \rho'}{\partial t} &+ \frac{\partial f_i}{\partial x_i} = 0\\ \frac{\partial f_i}{\partial t} &+ \frac{\partial}{\partial x_j} \Big[f_i (U_j + u'_j) + \rho_0 U_i u'_j + p' \delta_{ij} \Big] = 0\\ \frac{\partial p'}{\partial t} &- a_s^2 \frac{\partial \rho'}{\partial t} = -\frac{\partial P}{\partial t} \iff \frac{\partial p'}{\partial t} + a_s^2 \frac{\partial f_i}{\partial x_i} = -\frac{\partial P}{\partial t} \end{aligned}$$

Note: $f_i = \rho \cdot u'_i + U_i \cdot \rho'$, and $a_s^2 = \gamma \frac{P + \rho'}{\rho_0 + \rho'}$, with $\gamma = \frac{c_p}{c_v} = 1.4$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

Algorithm

- Instantaneous pressure: single information which is coming from the incompressible solution
- ⇒ Acoustic calculation can be started at any time during incompressible computation

Fluid-Dynamic equations + initial- and boundary conditions

 $\downarrow P(x_i, t) \downarrow$

Acoustic equations + initial- and boundary conditions

$$\rho'(x_i, t), \quad p'(x_i, t)$$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

INITIAL CONDITIONS

Appropriate initial conditions at the inlet are

$$egin{array}{rcl}
ho'&=&0\ u_i'&=&0\ respectively\ f_i=0\ p'&=&p_0-P \end{array}$$

• *p*⁰ denotes the constant ambient pressure

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

BOUNDARY CONDITIONS AT SOLID WALLS

- Remember: the acoustic equations are inviscid
- $\Rightarrow\,$ The only boundary condition at solid walls is the slip condition

$$\begin{array}{rcl} u_n & = & 0 \\ f_n & = & 0 \end{array}$$

The Lighthill Analogy Expansion About Incompressible Flow By Hardin & Pope

ACOUSTIC BOUNDARY CONDITIONS

- Acoustic boundary conditions: non-reflecting boundary conditions at the borderline of the computational domain
- Radiation boundary conditions proposed by Tam & Webb
- Aim: reducing non-physical reflection from computational boundaries

Overview Radial Pump Axial Pump

CONTENT

2 ACOUSTIC MODELS

- The Lighthill Analogy
- Expansion About Incompressible Flow By Hardin & Pope

3 NUMERICAL SIMULATIONS

Overview

- Radial Pump
- Axial Pump

Overview Radial Pump Axial Pump

SOFTWARE TOOLS

- Simulation of sound propagation and generation is obtained with the following components
 - NS3D : hydrodynamic solver, developed at the **FLM** GO tO NS3D
 - SYSNOISE : commercial tool for acoustics, based on aeroacoustic analogy by Lighthill
 - EIF : under development
- Interface between NS3D and SYSNOISE allows transmission of the transient solutions for pressure and velocity from NS3D to SYSNOISE

Overview Radial Pump Axial Pump

SIMULATION ROUTINE WITH SYSNOISE

TESTCASES

Two test cases will be presented:

- Radial Pump RP28
- Axial Pump AP149

Overview Radial Pump Axial Pump

CONTENT

1 INTRODUCTION

2 ACOUSTIC MODELS

- The Lighthill Analogy
- Expansion About Incompressible Flow By Hardin & Pope

3 NUMERICAL SIMULATIONS

- Overview
- Radial Pump
- Axial Pump

Overview Radial Pump Axial Pump

GENERAL INFORMATIONS

- Provided by Wilo AG
- Acoustic measurements for validation already exist
- Radial pump has an impeller with 7 blades
- Char. $Re = 6 \cdot 10^5$
- Analysis takes place at the following operating points
 - **Optimal load**: $Q = 2.5 \frac{m^3}{h}, n = 2524 \frac{1}{min}$
 - **Partial load**: $Q = 1.0 \frac{m^3}{h}, n = 2690 \frac{1}{min}$

Overview Radial Pump Axial Pump

GEOMETRY OF THE RADIAL PUMP

Overview Radial Pump Axial Pump

THE COMPLETE INSTALLATION

Overview Radial Pump Axial Pump

POINT OF GREATEST PRESSURE FLUCTUATIONS

Computational grid for flow solution for impeller, spiral case and sidechamber Pressure fluctuations in the pump

Overview Radial Pump Axial Pump

PRESSURE DISTRIBUTION

Overview Radial Pump Axial Pump

COMPUTATIONAL GRID FOR ACOUSTIC COMPUTATIONS

Overview Radial Pump Axial Pump

FIRST STEP

- Investigation of the sound generation, resulting from pressure fluctuations at the rotating blades
- Therefore
 - Definition of rotating dipole sources on the surface of the blades
 - Definition of distributed fixed dipole sources on the walls of the spiral case at the outlet area

Overview Radial Pump Axial Pump

DIPOLE SOURCES FOR FIRST STEP

Definiton of the (LEFT) rotating dipole sources and (RIGHT) fixed dipole sources at the volute tongue

Overview Radial Pump Axial Pump

RESULTS FROM STEP ONE FOR FIXED DIPOLES

Flow-induced sound power through fixed dipoles under optimal load $Q = 2.5 \frac{m^3}{h}$; blue measurement, red computation

Overview Radial Pump Axial Pump

RESULTS FROM STEP ONE FOR FIXED DIPOLES

Flow-induced sound power through fixed dipoles under partial load $Q = 1.0 \frac{m^3}{h}$; blue measurement, red computation

Overview Radial Pump Axial Pump

RESULTS FROM STEP ONE FOR ROTATING DIPOLES

Flow-induced sound power through rotating dipoles; (LEFT) $Q = 2.5 \frac{m^3}{h}$, (RIGHT) $Q = 1.0 \frac{m^3}{h}$

Overview Radial Pump Axial Pump

ANALYSIS OF THE RESULTS FROM STEP ONE

- In contrast to the experimental measurements, the resulting flow-induced sound power is too inaccurate
- ⇒ Considering of additional pressure fluctuations at the interior of the pump

\Rightarrow Second step:

- Define supplementary fixed dipoles in the volute tongue area (the area around the outlet)
- Consider additional areas for definition of further source terms from the flow solution

Overview Radial Pump Axial Pump

ANALYSIS OF THE RESULTS FROM STEP ONE

- In contrast to the experimental measurements, the resulting flow-induced sound power is too inaccurate
- ⇒ Considering of additional pressure fluctuations at the interior of the pump

\Rightarrow Second step:

- Define supplementary fixed dipoles in the volute tongue area (the area around the outlet)
- Consider additional areas for definition of further source terms from the flow solution

Overview Radial Pump Axial Pump

ANALYSIS OF THE RESULTS FROM STEP ONE

- In contrast to the experimental measurements, the resulting flow-induced sound power is too inaccurate
- ⇒ Considering of additional pressure fluctuations at the interior of the pump

⇒ Second step:

- Define supplementary fixed dipoles in the volute tongue area (the area around the outlet)
- Consider additional areas for definition of further source terms from the flow solution

Overview Radial Pump Axial Pump

DISTRIBUTED DIPOLE SOURCES

Definition of the distributed dipoles (red) volute tongue area and (green) extended area

Overview Radial Pump Axial Pump

FLOW-INDUCED ACOUSTIC POWER (OPTIMAL LOAD)

Flow-induced acoustic power under optimal load (a) measurement (b) calculation with dipoles in the volute tongue area (c) calculation with dipoles in the extended area

Overview Radial Pump Axial Pump

FLOW-INDUCED ACOUSTIC POWER (PARTIAL LOAD)

Flow-induced acoustic power under partial load (a) measurement (b) calculation with dipoles in the volute tongue area (c) calculation with dipoles in the extended area

Overview Radial Pump Axial Pump

SUMMARY OF THE RESULTS

Comparison of the two results shows

- Dominating dipole sources are situated at the volute tongue of the pump
- Additional dipole sources in the extended area have nearly no influence on the computed acoustic power

Overview Radial Pump Axial Pump

SUMMARY OF THE RESULTS

Comparison of the two results shows

- Dominating dipole sources are situated at the volute tongue of the pump
- Additional dipole sources in the extended area have nearly no influence on the computed acoustic power

Overview Radial Pump Axial Pump

SUMMARY OF THE RESULTS

Comparison of the two results shows

- Dominating dipole sources are situated at the volute tongue of the pump
- Additional dipole sources in the extended area have nearly no influence on the computed acoustic power

Overview Radial Pump Axial Pump

CONTENT

1 INTRODUCTION

2 ACOUSTIC MODELS

- The Lighthill Analogy
- Expansion About Incompressible Flow By Hardin & Pope

3 NUMERICAL SIMULATIONS

- Overview
- Radial Pump
- Axial Pump

Overview Radial Pump Axial Pump

GENERAL INFORMATIONS

- Specific rotational frequency $n_q \approx 150$
- Number of rotor blades $Z_{rot} = 16$
- Number of stator blades $Z_{stat} = 19$
- Investigations at the TU Braunschweig for validation have already been made

Overview Radial Pump Axial Pump

GEOMETRY AND MESH FOR THE AXIAL PUMP

Geometry of the axial pump

Meshing of the axial pump

Overview Radial Pump Axial Pump

ANALYSIS OF THE HYDRODYNAMIC EQUATIONS

• Computation of the flow field shows:

- The most intense pressure fluctuations arise at the point where stator-rotor interaction takes place, more precise where the unsteady flow hits the tip of the stator
- I.e. at the hub
- Consider only fixed dipoles at the stator as acoustic sources

Overview Radial Pump Axial Pump

ANALYSIS OF THE HYDRODYNAMIC EQUATIONS

- Computation of the flow field shows:
 - The most intense pressure fluctuations arise at the point where stator-rotor interaction takes place, more precise where the unsteady flow hits the tip of the stator

• I.e. at the hub

 Consider only fixed dipoles at the stator as acoustic sources

Overview Radial Pump Axial Pump

ANALYSIS OF THE HYDRODYNAMIC EQUATIONS

- Computation of the flow field shows:
 - The most intense pressure fluctuations arise at the point where stator-rotor interaction takes place, more precise where the unsteady flow hits the tip of the stator
 - I.e. at the hub
- Consider only fixed dipoles at the stator as acoustic sources

Overview Radial Pump Axial Pump

ANALYSIS OF THE HYDRODYNAMIC EQUATIONS

- Computation of the flow field shows:
 - The most intense pressure fluctuations arise at the point where stator-rotor interaction takes place, more precise where the unsteady flow hits the tip of the stator
 - I.e. at the hub
- ⇒ Consider only fixed dipoles at the stator as acoustic sources

Overview Radial Pump Axial Pump

NODE SELECTION FOR CONSIDERATION

Overview Radial Pump Axial Pump

SIMULATION OF THE PUMP

- Evaluation of the dipoles on the stator blades in order to calculate the noise levels on the in- and outlet surfaces
- Analysis over a frequency domain up to 1500 Hz
- Frequency steps $\triangle f = 75 \text{ Hz}$
- Computation of the acoustic power for a spherical field-point-area with distance d = 2 m to the origin

Overview Radial Pump Axial Pump

ACOUSTIC POWER

Field-point-area

Acoustic power radiated from the axial pump

EVALUATION OF THE SIMULATION RESULTS

- Generally the developed hydrodynamic-acoustic solver is able to predict the expected sound radiation qualitatively good
- But with Lighthill the acoustic power level is computed improperly
- Reasons:
 - sound passing through the body of the pump is not computed at all
 - sound radiated from the body is computed inadequately

DRAWBACKS OF LIGHTHILL

- Theory presumes an unresisted sound propagation by means of linear wave equation
- Lighthill analogy acts on the assumption of an unbounded computational domain
- Sound radiation is modeled only into free space
- ⇒ Effects like reflection, absorption or refraction by solid boundaries can only be considered in combination with discretisation methods (i.e. BEM, FEM)

EIF AS ALTERNATIVE OPTION

- Generally accepted in context of small density fluctuations
- Due to the splitting of the viscous and acoustic problem, adapt one grid and integration scheme for
 - solution of the viscous incompressible equations
 - solution of acoustic perturbations

It is supposed that EIF produces more precise predictions of noise generation and propagation than Lighthill does!

• EIF is desired method, which will be pursued in future!

Thank you for your attention!

58/70

DNS Rearranging the NSE by Lighthill Derivation of the acoustic equations for EIF The hydrodynamic solver NS3D

DIRECT NUMERICAL SIMULATION

- Solves original 3D unsteady Navier-Stokes equations
- Exact numerical solution of Navier-Stokes equations provides both
 - fluiddynamic quantities
 - acoustic quantities

within the same solution vector

$$\begin{bmatrix} \rho(x_i, t) \\ u_i(x_i, t) \\ p(x_i, t) \end{bmatrix}$$

Necessity of a numerical mesh with an adequate fine resolution

• Direct computation of NSE with appropriate state equations for 3D unsteady flow demands a grid size with number of mesh points *N*

$$N\sim Re^3$$

• For technically interesting flows (*Re* > 10⁵) DNS needs enormous calculating capacity and calculating time

▲ Return

DNS Rearranging the NSE by Lighthill Derivation of the acoustic equations for EIF The hydrodynamic solver NS3D

DERIVATION OF LIGHTHILL'S ACOUSTIC EQUATION

Point of departure are the conservation equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = \mathbf{0}$$
$$\rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + f_i$$

 Multiplying the conservation of mass equation by u_i and adding the product to the momentum equation gives

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + f_i$$

• Taking into account a source term *q* for the continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = q$$

 Differentiating the mass equation with respect to time, and the momentum equation with respect to x_i results in

$$\frac{\partial^2 \rho}{\partial t^2} + \frac{\partial^2 (\rho u_j)}{\partial t \partial x_j} = \frac{\partial q}{\partial t}$$
$$\frac{\partial^2 (\rho u_i)}{\partial x_i \partial t} + \frac{\partial^2 (\rho u_i u_j)}{\partial x_i \partial x_j} = -\frac{\partial^2 \rho}{\partial x_i^2} + \frac{\partial f_i}{\partial x_i}$$

 By subtracting the latter one from the first equation, one gets the acoustic wave equation

$$\frac{\partial^2 \rho}{\partial t^2} - \frac{\partial^2 \boldsymbol{p}}{\partial x_i^2} = \frac{\partial \boldsymbol{q}}{\partial t} - \frac{\partial f_i}{\partial x_i} + \frac{\partial^2}{\partial x_i \partial x_j} \Big(\rho \boldsymbol{u}_i \boldsymbol{u}_j \Big)$$

DNS Rearranging the NSE by Lighthill Derivation of the acoustic equations for EIF The hydrodynamic solver NS3D

Use a perturbation ansatz for linearisation

$$\rho = \rho_0 + \rho'$$

$$\rho = \rho_0 + \rho'$$

$$u_i = U_i + u'_i$$

- *U_i* is the time-dependent solution, *u'_i* the turbulence induced fluctuation velocity
- Assume an isentropic state change

$$\frac{\partial \boldsymbol{p}}{\partial \rho} = \frac{\frac{\partial \boldsymbol{p}}{\partial t}}{\frac{\partial \rho}{\partial t}} = \boldsymbol{a}_{\boldsymbol{s}}^2 = \gamma \cdot \boldsymbol{R} \cdot \boldsymbol{T}, \qquad \text{with}$$

- γ: heat capacity ratio
- R: gas constant
- T: temperature

Thus

$$\frac{\partial(\boldsymbol{p}_{0}+\boldsymbol{p}')}{\partial(\rho_{0}+\rho')}=\frac{\partial\boldsymbol{p}'}{\partial\rho'}=\boldsymbol{a}_{s}^{2}=\boldsymbol{\gamma}\cdot\boldsymbol{R}\cdot\boldsymbol{T}=\frac{\frac{\partial\boldsymbol{p}'}{\partial t}}{\frac{\partial\rho'}{\partial t}}$$

And with

$$\frac{\partial^2 \rho}{\partial t^2} = \frac{\partial^2 (\rho_0 + \rho')}{\partial t^2} = \frac{\partial^2 \rho'}{\partial t^2} = \frac{1}{a_s^2} \frac{\partial^2 p'}{\partial t^2}$$
$$\frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 (\rho_0 + \rho')}{\partial t^2} = \frac{\partial^2 p'}{\partial t^2}$$

⇒ One gets the **Lighthill wave equation** for the alternating density $\rho'(x_i, t)$

$$\frac{\partial^2 \rho'}{\partial t^2} - a_s^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \frac{\partial q}{\partial t} - \frac{\partial f_i}{\partial x_i} + \frac{\partial^2}{\partial x_i \partial x_j} \Big(\rho u_i u_j \Big).$$

SPLITTING OF THE LAST TERM

$$\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left(\left(\rho_{0}+\rho'\right)\left(U_{i}+u_{i}'\right)\left(U_{j}+u_{j}'\right)\right) = \frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left(\rho_{0}U_{i}U_{j}+\rho_{0}U_{i}u_{j}'+\rho_{0}u_{i}'U_{j}+\rho'U_{i}U_{j}+\rho'U_{i}u_{j}'+\rho'u_{i}'U_{j}\right) + \frac{\partial^{2}}{\sum_{i}(1)} \underbrace{\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left(\rho'u_{i}'u_{j}'\right)}_{(2)} + \underbrace{\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left(\rho'u_{i}'u_{j}'\right)}_{(2)} = \underbrace{\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left(\rho'u_{i}'u_{j}'\right)}_{$$

spatial fluctuations of turbulent normal and shear stresses
spatial fluctuations of temporal fluct. momentum forces

65/70

LINEARISATION OF THE CONSERVATION EQUATIONS

• First consider the continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = \mathbf{0}$$
$$\Leftrightarrow \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_i}{\partial x_i} + u_i \frac{\partial \rho}{\partial x_i} = \mathbf{0}$$

use the perturbation ansatz

$$u_i = U_i + u'_i,$$

$$\rho = \rho_0 + \rho'$$

Remember

$$f_i = (\rho_0 + \rho') \cdot u'_i + U_i \cdot \rho',$$

• The continuity equation can be transformed to

$$\begin{aligned} &\frac{\partial \rho_{0}}{\partial t} + \frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{i}} \left(u'_{i} \cdot (\rho_{0} + \rho') + U_{i} \cdot \rho_{0} + U_{i} \cdot \rho' \right) = \mathbf{0} \\ \Leftrightarrow \qquad \underbrace{\frac{\partial \rho_{0}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\rho_{0} \cdot U_{i} \right)}_{\mathbf{0}} + \\ &+ \qquad \underbrace{\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\underbrace{u'_{i} \cdot (\rho_{0} + \rho') + U_{i} \cdot \rho'}_{=f_{i}} \right) = \mathbf{0} \end{aligned}$$

 This results in the linearised continuity equation for compressible fluids

$$\frac{\partial \rho'}{\partial t} + \frac{\partial f_i}{\partial x_i} = \mathbf{0}$$

• For simplification consider the momentum equation of the Euler equations

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j + \rho \delta_{ij}) = 0$$

Inserting the perturbations, one gets

$$\begin{split} &\frac{\partial}{\partial t} \bigg[(\rho_0 + \rho') (U_i + u_i') \bigg] + \\ &\frac{\partial}{\partial x_i} \bigg[(\rho_0 + \rho') (U_i + u_i') (U_j + u_j') + (P + p') \delta_{ij} \bigg] = 0 \end{split}$$

Various transformations give the following expression

$$\frac{\partial}{\partial t} \left(\rho_0 \cdot U_i + f_i \right) + \\ \frac{\partial}{\partial x_j} \left((U_j + u_j') \cdot \left[\underbrace{u_i'(\rho_0 + \rho') + U_i \rho'}_{=f_i} + U_i \rho_0 \right] + (P + p') \delta_{ij} \right) = 0$$

• which results in the final acoustic momentum equation

$$\underbrace{\frac{\partial}{\partial t}(\rho_0 U_i) + \frac{\partial}{\partial x_j}\left(\rho_0 U_i U_j + p' \delta_{ij}\right)}_{\equiv 0} + \underbrace{\frac{\partial}{\partial t}(f_i) + \frac{\partial}{\partial x_j}\left((U_j + u'_j) \cdot f_i + \rho_0 U_i u'_j + p' \delta_{ij}\right)}_{\equiv 0} = 0$$

NS3D

Simulation tool, developed at the FLM

- Incompressible and compressible fluid flows
- Stationary and nonstationary
- Integrated turbulence model
- Based on Finite-Volume methods
- ⇒ Ability to handle complex geometries (especially in turbo machinery)

