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A (qu)bit of General Culture I

Figure 1: Sombrero vueltiao (Hat with laps)
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A (qu)bit of General Culture II

Figure 2: Botero’s Painting
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Recommendations

Forget the idea of common sense

Einstein: “God does not play dice”

Bohr: “Stop telling God what to do with his dice”

Keep as skeptical as you can

Find out the intended bugs
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Introduction

Certain quantum mechanical effects cannot be simulated efficiently
on a classical computer [2]

Building quantum computers proved tricky, and no one was sure
how to use the quantum effects to speed up computation

Applications of interest:

Quantum key distribution
Quantum teleportation
A three-bit quantum computer

In quantum systems the amount of parallelism increases
exponentially with the size of the system

Physical implementation:

Ion traps
Nuclear Magnetic Resonance (NMR)
Optical and solid state techniques
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Ion traps

Figure 3: 4 Magnets
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Ion traps

Figure 4: Paul trap
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Quantum Mechanics

Quantum Mechanics

Quantum mechanics describes physical systems at the atomic level

Quantum mechanical phenomena are difficult to understand since
most of everyday experiences are not applicable

By definition Quantum mechanics leads to several apparent
paradoxes:

Compton effect: an action precedes its cause
Schrödinger’s cat: the cat is simultaneously alive and dead
Einstein, Podolsky, and Rosen paradox: spooky action at a distance
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Quantum Mechanics

Photon Polarization

Experiment I

Figure 5: Photon Polarization Experiment
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Quantum Mechanics

Photon Polarization

Experiment II

Figure 6: Photon Polarization Experiment
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Quantum Mechanics

Photon Polarization

Experiment III

Figure 7: Photon Polarization Experiment
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Quantum Mechanics

State Spaces and Bra/Ket Notation

State Spaces and Bra/Ket Notation

Ket |x〉 denotes column vectors and are typically used to describe
quantum states

Bra 〈x | denotes the conjugate transpose of |x〉
Combining 〈x | and |y〉 as in 〈x ||y〉, also written as 〈x |y〉
Remarkable results:

Inner Product 〈0|0〉 = 1 (Normality)
〈0|1〉 = 0 (Orthogonality)
|0〉〈1||1〉 = |0〉〈1|1〉 = |0〉

|0〉〈1||0〉 = |0〉〈1|0〉 = 0|0〉 =

„
0
0

«
Outer Product |0〉〈1| =

„
1
0

«
(0, 1) =

„
0 1
0 0

«
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Quantum Bits

Quantum Bits

A qubit is a unit vector in a two dimensional complex vector space
with fixed basis

Orthonormal basis |0〉 and |1〉 may correspond to |↑〉 and |→〉
The basis states |0〉 and |1〉 are taken to represent the classical bit
values 0 and 1 respectively

Qubits can be in a superposition of |0〉 and |1〉 such as a|0〉+ b|1〉
|a|2 and |b|2 are the probabilities that the measured value are |0〉
and |1〉 respectively
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Quantum Bits

Quantum Key Distribution

Quantum Key Distribution I

Sequences of single qubits can be used to transmit private keys on
insecure channels

Classically, public key encryption techniques are used for key
distribution

For example, Alice and Bob want to agree on a secret key so that
they can communicate privately. They are connected by an ordinary
bi-directional open channel and a uni-directional quantum channel
both of which can be observed by Eve, who wishes to eavesdrop on
their conversation
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Quantum Key Distribution

Quantum Key Distribution II

Figure 8: Alice
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Quantum Key Distribution

Quantum Key Distribution III

Figure 9: Bob
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Quantum Bits

Quantum Key Distribution

Quantum Key Distribution IV

Figure 10: Eve
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Quantum Key Distribution

Quantum Key Distribution V

Figure 11: Key Distribution Scenario
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Quantum Key Distribution

Quantum Key Distribution VI

Figure 12: Transmition of the first state
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Quantum Key Distribution

Quantum Key Distribution VII

Figure 13: Transmition of the last state
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Quantum Key Distribution

Quantum Key Distribution VIII

Figure 14: Exchange of the basis
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Quantum Bits

Quantum Key Distribution

Quantum Key Distribution IX

Figure 15: Final agreement between Alice and Bob
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Quantum Bits

Quantum Key Distribution

Quantum Key Distribution X

Figure 16: Agreement between Alice and Bob
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Quantum Bits

Quantum Key Distribution

Quantum Key Distribution XI

Figure 17: Agreement between Alice, Bob, and Eve
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Quantum Bits

Multiple Qubits

Multiple Qubits

The state of a qubit can be represented by a vector in the two
dimensional complex vector space spanned by |0〉 and |1〉
The state space for two qubits, each with basis {|0〉, |1〉}, has basis
{|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉}, briefly, {|00〉, |01〉, |10〉, |11〉}

Example: Entangled States

The state |00〉+ |11〉 cannot be described in terms of the state of each of
its qubits separately. In other words, we cannot find a1, a2, b1, b2 such
that (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) = |00〉+ |11〉 since

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) =

a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉

and a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0
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Quantum Bits

Measurement

Measurement I

The result of a measurement is probabilistic and the process
of measurement changes the state to that measured

Example: Measurement of a 2-qubit system

Any 2-qubit state can be expressed as a|00〉+ b|01〉+ c|10〉+ d |11〉.
Where a, b, c, and d are complex numbers such that
|a|2 + |b|2 + |c|2 + |d |2 = 1
Suppose we wish to measure the first qubit with respect {|0〉, |1〉}

a|00〉+ b|01〉+ c|10〉+ d |11〉 =

|0〉 ⊗ (a|0〉+ b|1〉) + |1〉 ⊗ (c|0〉+ d |1〉)

u|0〉 ⊗ (
a

u
|0〉+

b

u
|1〉) + v |1〉 ⊗ (

c

v
|0〉+

d

v
|1〉)

For quantum computation, multi-bit measurement can be treated as
a series of single-bit measurements in the standard basis



Introduction to Quantum Computing

Quantum Bits

Measurement

Measurement II

Particles are not entangled if the measurement of one has no effect
on the other

Example: Measurement Entangled States

The state 1√
2

(|00〉+ |11〉) is entangled since the probability that the

first bit is measured to be |0〉 is 1/2 if the second bit has not been
measured

The state 1√
2

(|00〉+ |01〉) is not entangled since:
1√
2

(|00〉+ |01〉) = |0〉 ⊗ 1√
2

(|0〉+ |1〉)
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The EPR Paradox

The EPR Paradox I

Einstein, Podolsky, and Rosen proposed a gedanken experiment that
seemed to violate fundamental principles relativity

Imagine a source that generates two maximally entangled particles
1√
2

(|00〉+ |11〉), called an EPR pair, and sends one to Alice and one

Bob

Suppose that Alice measures her particle and observes state |0〉
Now Bob measures his particle he will also observe |0〉
Similarly, if Alice measures |1〉, so will Bob
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Quantum Bits

The EPR Paradox

The EPR Paradox II

Figure 18: EPR Paradox Setup
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Quantum Gates

Quantum Gates

Any linear transformation on a complex vector space can be
described by a matrix

One can think of unitary transformations as being rotations of a
complex vector space
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Simple Quantum Gates

Simple Quantum Gates

The transformations are specified by their effect on the basis vectors

It can be verified that these gates are unitary. For example YY ∗ = I

Transformations on basis vectors:

Identity I :
|0〉 → |0〉
|1〉 → |1〉

„
1 0
0 1

«
Negation X :

|0〉 → |1〉
|1〉 → |0〉

„
0 1
1 0

«
Phase shift negation Y :

|0〉 → −|1〉
|1〉 → |0〉

„
0 1
−1 0

«
Phase shift Z :

|0〉 → |0〉
|1〉 → −|1〉

„
1 0
0 −1

«

Controlled-not Cnot :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

0BB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCA
Walsh-Hadamard H :

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

„
1 1
1 −1

«
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Examples

Examples

The use of simple quantum gates can be studied with two examples:

Dense coding
Teleportation

The key to both dense coding and teleportation is the use of
entangled particles

ψ0 =
1√
2

(|00〉+ |11〉)
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Quantum Gates

Examples

Dense Coding I

Figure 19: Dense Coding

The idea is to send 2 bits of classical information using only 1 qubit

Alice receives two classical bits, encoding the numbers 0 through 3



Introduction to Quantum Computing

Quantum Gates

Examples

Dense Coding II

Depending on this number Alice performs one of the transformations
{I ,X ,Y ,Z}

Value Transformation New State
0 ψ0 = (I ⊗ I )ψ0

1√
2

(|00〉+ |11〉)
1 ψ1 = (X ⊗ I )ψ0

1√
2

(|10〉+ |01〉)
2 ψ2 = (Y ⊗ I )ψ0

1√
2

(−|10〉+ |01〉)
3 ψ3 = (Z ⊗ I )ψ0

1√
2

(|00〉 − |11〉)

Table 1: Resulting States Alice

Bob applies a Controlled-not to the two qubits of the entangled pair

He can measure the second qubit without disturbing the quantum
state
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Examples

Dense Coding III

Initial State Controlled-not bit 1 bit 2
ψ0 = 1√

2
(|00〉+ |11〉) 1√

2
(|00〉+ |10〉) 1√

2
(|0〉+ |1〉) |0〉

ψ1 = 1√
2

(|10〉+ |01〉) 1√
2

(|11〉+ |01〉) 1√
2

(|1〉+ |0〉) |1〉
ψ2 = 1√

2
(−|10〉+ |01〉) 1√

2
(−|11〉+ |01〉) 1√

2
(−|1〉+ |0〉) |1〉

ψ3 = 1√
2

(|00〉 − |11〉) 1√
2

(|00〉 − |10〉) 1√
2

(|0〉 − |1〉) |0〉

Table 2: Resulting States Bob

Now, Bob applies H to the first qubit
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Quantum Gates

Examples

Dense Coding IV

State First bit H (First bit)
ψ0

1√
2

(|0〉+ |1〉) 1√
2

( 1√
2

(|0〉+ |1〉) + 1√
2

(|0〉 − |1〉)) = |0〉
ψ1

1√
2

(|1〉+ |0〉) 1√
2

( 1√
2

(|0〉 − |1〉) + 1√
2

(|0〉+ |1〉)) = |0〉
ψ2

1√
2

(−|1〉+ |0〉) 1√
2

(− 1√
2

(|0〉 − |1〉) + 1√
2

(|0〉+ |1〉)) = |1〉
ψ3

1√
2

(|0〉 − |1〉) 1√
2

( 1√
2

(|0〉+ |1〉)− 1√
2

(|0〉 − |1〉)) = |1〉

Table 3: Applying H to the first bit

Finally, Bob measures the resulting bit which allows him to
distinguish between 0 and 3, and 1 and 2
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Examples

Teleportation I

Figure 20: Evidence of Teleportation in the Past
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Examples

Teleportation II

The objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver

Since quantum state cannot be copied, the quantum state of
the given particle will necessarily be destroyed

Figure 21: Teleportation
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Examples

Teleportation III

Alice has a qubit whose state she doesn’t know. She wants to send
the state of this qubit

φ = a|0〉+ b|1〉

to Bob through classical channels. As with dense coding, Alice and
Bob each possess one qubit of an entangled pair

ψ0 =
1√
2

(|00〉+ |11〉)
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Examples

Teleportation IV

Alice applies the decoding step of dense coding to the qubit φ to be
transmitted and her half of the entangled pair

ψ ⊗ ψ0 =
1√
2

(a|0〉 ⊗ (|00〉+ |11〉) + b|1〉 ⊗ (|00〉+ |11〉))

1√
2

(a|000〉+ a|011〉+ b|100〉+ b|111〉)

of which Alice controls the first two bits and Bob controls the last
one
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Quantum Gates

Examples

Teleportation V

Alice now applies Cnot ⊗ I and H ⊗ I ⊗ I to this state:

(H ⊗ I ⊗ I )(Cnot ⊗ I )(ψ ⊗ ψ0) =

(H ⊗ I ⊗ I )(Cnot ⊗ I )
1√
2

(a|000〉+ a|011〉+ b|100〉+ b|111〉)

(H ⊗ I ⊗ I )
1√
2

(a|000〉+ a|011〉+ b|110〉+ b|101〉)

1

2
(a(|000〉+ |011〉+ |100〉+ |111〉)

+ b(|010〉+ |001〉 − |110〉 − |101〉)
1

2
(|00〉(a|0〉+ b|1〉) + |01〉(a|1〉+ b|0〉)

+ |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉))

Alice measures the first two qubits to get one of |00〉, |01〉, |10〉, or
|11〉 with equal probability
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Examples

Teleportation VI

Depending on the result of the measurement, the quantum state of
Bob’s qubit is projected to a|0〉+ b|1〉, a|1〉+ b|0〉, a|0〉 − b|1〉,
a|1〉 − b|0〉 respectively

When Bob receives the two classical bits from Alice he knows how
the state of his half of the entangled pair compares to the original
state of Alice’s qubit

Bits recieved State Decoding
00 a|0〉+ b|1〉 I
01 a|1〉+ b|0〉 X
10 a|0〉 − b|1〉 Z
11 a|1〉 − b|0〉 Y

Table 4: Decoding Transformation
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Examples

Teleportation VII

Bob can reconstruct the original state of Alice’s qubit, φ, by
applying the appropriate decoding transformation to his part of the
entangled pair
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Quantum Computers

Quantum Computers

Quantum mechanics can be used to perform computations

Computations done via quantum mechanics are qualitatively
different from those performed by a conventional computer

All quantum state transformations have to be reversible
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Quantum Computers

Quantum Gate Arrays

Quantum Gate Arrays

The Toffoli gate T can be used to construct complete set of boolean
connectives

T |1, 1, x〉 = |1, 1,¬x〉 (not)

T |x , y , 0〉 = |x , y , x ∧ y〉 (and)

Complex Unitary Operations:

Controlled-not Cnot = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X
Toffoli T = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ Cnot

Fredkin “Controled Swap” F = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ S where S is
the swap operation S = |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|
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Quantum Algorithms

Shor’s Algorithm

Shor’s Algorithm

In 1994 Peter Shor found a bounded probability polynomial time
algorithm for factoring n-digit numbers on a quantum computer

The most efficient classical algorithm known today is exponential in
the size of the input

Shor’s Algorithm uses a standard reduction of the factoring problem
to the problem of finding the period of a function
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Shor’s Algorithm

The Quantum Fourier Transform I

Fourier transforms in general map from the time domain to the
frequency domain

Discrete Fourier transform (DFT) operates on N equally spaced
samples in the interval [0, 2π)

The fast Fourier transform (FFT) is a version of DFT where N is a
power of 2

The quantum Fourier transform (QFT) is a variant of the DFT
which uses powers of 2. The QFT operates on the amplitude of the
quantum state, by sending∑

x

g(x)|x〉 →
∑

c

G (c)|c〉

where G (c) is the DFT of g(x), and |x〉 and |c〉 both range over the
binary representations for the integers between 0 and N − 1
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Shor’s Algorithm

The Quantum Fourier Transform II

The QFT UQFT with base N = 2m is defined by:

UQFT : |x〉 → 1√
2m

2m−1∑
c=0

e
2πicx
2m |c〉
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Shor’s Algorithm

Outline of Shor’s Algorithm

Shor’s Algorithm

1 Quantum parallelism

2 State whose amplitude has the same period as f

3 Applying a QFT

4 Extracting the period

5 Finding a factor of M

6 Repeating the algorithm, if necessary
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Search Problems

Search Problems

A large class of problems can be specified as search problems of the
form “find some x in a set of possible solutions such that statement
P(x) is true.”

Such problems range from database search to sorting to graph
coloring

An unstructured search problem is one where nothing is known
about the structure of the solution space and the statement P. For
example, determining P(x0) provides no information about the
possible value of P(x1) for x0 6= x1

A structured search problem is one where information about the
search space and statement P can be exploited. For instance,
searching an alphabetized list
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Quantum Algorithms

Search Problems

Grover’s Algorithm I

Grover’s Algorithm

1 Prepare a register containing a superposition of all possible values
xi ∈ [0, . . . , 2n − 1]

2 Compute P(xi ) on this register

3 Change amplitude aj to −aj for xj such that P(xj) = 1

4 Apply inversion about the average to increase amplitude of xj with
P(xj) = 1

5 Repeat steps 2 through 4 π
4

√
2n-times

6 Read the result
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Search Problems

Grover’s Algorithm II

Figure 22: Amplitudes after Step 3
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Search Problems

Grover’s Algorithm III

Figure 23: The resulting amplitudes
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Quantum Error Correction

Quantum Error Correction

One fundamental problem in building quantum computers is the
need to isolate the quantum state

An interaction of particles representing qubits with the external
environment disturbs the quantum state, and causes it to decohere,
or transform in an unintended and often non-unitary fashion

Quantum error correction must reconstruct the exact encoded
quantum state

Reconstruction appears harder than in the classical case since the
impossibility of cloning or copying the quantum state
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Quantum Error Correction

Characterization of Errors

The possible errors for each single qubit considered are linear
combinations of no errors I , bit flip errors X , phase errors Z , and bit
flip phase errors Y

|ψ〉 → (e1I + e2X + e3X + e4Z )|ψ〉 =
∑

i

eiEi |ψ〉
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Conclusions

Conclusions

Quantum computations must be linear and reversible, any classical
algorithm can be implemented on a quantum computer

Given a practical quantum computer, Shor’s algorithm would make
many present cryptographic methods obsolete

Grover’s search algorithm proves that quantum computers are
strictly more powerful than classical ones

It is an open question whether we can find quantum algorithms that
provide exponential speed-up for other problems

A big breakthrough for dealing with decoherence came from the
development of quantum error correction techniques
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Further Reading

Further Reading

Andrew Steane’s Quantum computing [3]

Richard Feynman’s Lectures on Computation [1]

Williams and Clearwater’s book Explorations in Quantum
Computing [5]

SIAM Journal of Computing issue of October 1997

Leonard Susskind’s lecture on Modern Physics: Quantum Mechanics
[4]
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