

Babak Gholami CSE TUM JASS2009

Contents

- Introduction
- Model Problems
- Basic Iterative Methods
- Elements of Multigrid
- Implementation
- Nonlinear Problem

Introduction

Origins...

- Multigird is an entire approach to computational problem solving, a collection of ideas...
- Originally, for solving BVP's.
- But later:
 - Parabolic and Hyperbolic PDE's
 - Purely algebraic problems with no physical grid
 - Optimization
 - Integral Equations

Capabalities

- A wide variety of problems
- Arbitrary regions and boundary conditions
- An optimal solver (with the right setup)
- Can be efficiently parallelized
- Effectively treats local demands (Multilevel Adaptive Methods)

Model Problems

What problem?

- Multigrid methods were originally applied to simple BVPs.
- For simplicity we do the same here (for now!)
- Let's call this "Model Problem":

$$-\nabla^2 u + \sigma u = f(x, y, z, ...), \quad 0 < x, y, z, ... < 1, \quad \sigma \ge 0$$

Zero at boundaries.

Discretization

Two dimensional case:

$$\frac{-v_{i-1,j} + 2v_{ij} - v_{i+1,j}}{h_x^2} + \frac{-v_{i,j-1} + 2v_{ij} - v_{i,j+1}}{h_y^2} + \sigma v_{ij} = f_{ij},$$

$$v_{i0} = v_{in} = v_{0j} = v_{mj} = 0, \qquad 1 \le i \le m-1, \quad 1 \le j \le n-1.$$

Or more compactly:

$$A\mathbf{v} = \mathbf{f}$$

Direct and Relaxation methods are the two large categories for solving such a problem.

Direct Methods

- Determine a solution up to the machine's precision in a finite number of arithmetic steps.
- Gaussian Elimination is a prototype.
- But we are interested in relaxation methods here...

Basic Iterative Methods

Notation

- u denotes the exact solution and v the current approximation.
- To associate \mathbf{u} with a grid Ω^h , \mathbf{u}^h is used.
- e is used for error which is given by:

 $\mathbf{e} = \mathbf{u} - \mathbf{v}$

The residual is shown by r and is defined this way:

$$\mathbf{r} = \mathbf{f} - A\mathbf{v}$$

More on the Residual

Knowing that Au = f, we can write the residual equation:

 $A\mathbf{e} = \mathbf{r}$

- It says the error will satisfy the same set of equations as the unknown when the right hand side is replaced by the residual.
- The residual is simply the amount by which the current approximation fails to satisfy our problem.

A Simple Scheme: Jacobi

- Jacobi is solving the jth equation of system of equations for the jth unknown using current approximation for all other variables.
- We can express the relaxation scheme in matrix form:

$$A = D - L - U$$

$$\Rightarrow \mathbf{u} = R_J \mathbf{u} + D^{-1} \mathbf{f}, \qquad R_J = D^{-1} (L + U).$$

So we write:
$$\mathbf{v}^{(1)} = R_J \mathbf{v}^{(0)} + D^{-1} \mathbf{f}$$

Weighted Jacobi

- We make a modification and introduce an entire family of iterations called weighted Jacobi (damped Jacobi).
- In matrix form:

 $\mathbf{v}^{(1)} = R_{\omega} \mathbf{v}^{(0)} + \omega D^{-1} \mathbf{f}, \qquad R_{\omega} = (1 - \omega) I + \omega R_{J}$

Using the definition of the residual:

$$\mathbf{v}^{(1)} = \mathbf{v}^{(0)} + \omega D^{-1} \mathbf{r}^{(0)}.$$

It can be shown that the closer ωD^{-1} is to A^{-1} the more effective is our iteration scheme.

More Relaxation Schemes(1)

- Gauss-Seidel: Components of the new approximation are used as soon as they are computed
- In matrix form:

$$\mathbf{v} \leftarrow R_G \mathbf{v} + (D - L)^{-1} \mathbf{f}, \qquad R_G = (D - L)^{-1} U.$$

- The order in which the components of vare updated is important.
- An effective alternative to just sweeping in ascending order is red-black Gauss-Seidel.

More Relaxation Schemes(2)

- Red-black Gauss-Seidel updates all even components first, and then goes through the odd components.
- This scheme is very well suited for parallel computation. (each sweep can be done by several independent processors)

More Investigation(1)

- Because these methods are stationary linear it is enough to work with the homogeneous linear system Av = 0 and use arbitrary initial guesses.
- To study the one-dimensional case of the model problem we use Fourier modes for the initial guess:

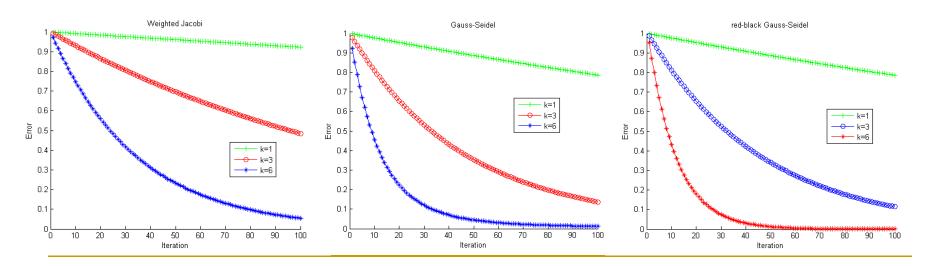
$$v_j = \sin\left(\frac{jk\pi}{n}\right), \qquad 0 \le j \le n, \quad 1 \le k \le n-1.$$

More Investigation(2)

- Introducing the wavenumber (frequency), v_k designates the entire vector v with wavenumber k.
- To compare the introduced methods first the weighed Jacobi with $\omega = \frac{2}{3}$ is applied to the one-dimensional version of the model problem with f = 0 on a grid with 64 points.
- Beginning with v₁, v₃ and v₆ the iteration is applied 100 times.

Results(1)

Here the norm of the error is plotted against the number of iterations for all the three methods. What is important now is the qualitative behavior.

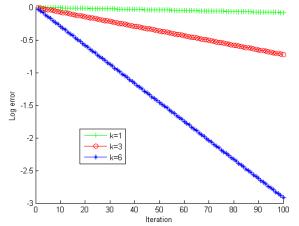


Results(2)

- Here the logarithm of the norm of the Jacobi error is plotted against the number of iterations.
- This clear linear behavior indicates that the error itself decreases geometrically with each iteration:

$$\left\|e^{(m)}\right\|_{\infty}=c_k^m\left\|e^{(0)}\right\|_{\infty}$$

 This constant depends on the wavenumber.

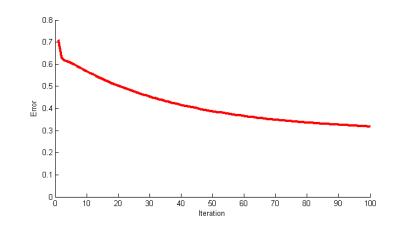


More Realistic Situation(1)

- In general most initial guesses (or equivalently the right hand side) consist of different modes.
- This is been simulated with an initial guess consisting of the average of one low frequency mode (*k*=1), a medium (*k*=6) and a high frequency (*k*=32).
- The figure in the next slide shows the result for weighted Jacobi applied to the problem.

More Realistic Situation(2)

The standard iteration converges very quickly only as long as the error has high-frequency components. The slower elimination of the low-frequency components desgrades the performance of the relaxation methods.



What to Conclude?

- This drawback of the relaxation schemes can be analytically proven.
- Moreover, one can find an optimum for ω to reduce the smooth components of the error more effectively.
- This is not enough.

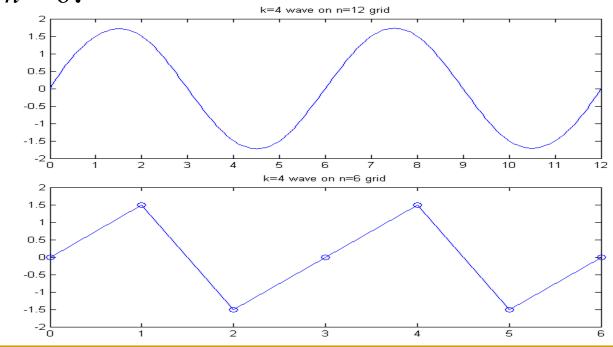
Elements of Multigrid

Why Considering Coarser Grids? (1)

- So far we have seen that most of basic iterative methods possess the smoothing property.
- One idea is to take advantage of a good initial guess.
- A well-known technique to obtain one is perform some iterations on a coarse grid.
- It is cheaper due to fewer unknowns and faster while convergence behaves like $1 O(h^2)$.

Why Considering Coarser Grids? (2)

• A smooth wave with k = 4 on Ω^h with n = 12 points has been projected directly to the grid Ω^{2h} with n = 6.



Why Considering Coarser Grids? (3)

- To state this more precisely, note that the grid points of the coarse grid are the evennumbered grid points of the fine grid.
- For the *k*th mode:

$$w_{k,2j}^{h} = \sin\left(\frac{2jk\pi}{n}\right) = \sin\left(\frac{jk\pi}{n/2}\right) = w_{k,j}^{2h}, \qquad \mathbf{1} \le k < \frac{n}{2}$$

So the *k*th mode on the fine grid is the *k*th mode on the coarse grid. But there are half as many modes on Ω^{2h} as there are on Ω^{h} .

The Starting Point of Multigrid

- Smooth modes on a fine grid look less smooth on a coarse one.
- This suggests that when relaxation begins to stall, move to a coarser grid.
- But how do we move?
- Relaxation on the original equation Au = f with a arbitrary initial guess is equivalent to relaxing on the residual equation Ae = r with the specific initial guess e = 0.

Putting the Ideas Together (1)

- Using the coarse grid to obtain better initial guess:
 - Relax on Au = f on a very coarse grid to obtain an initial guess for the next finer grid.

- □ Relax on $A\mathbf{u} = \mathbf{fon} \ \Omega^{2h}$ to obtain an initial guess for Ω^{h} .
- □ Relax on A**u** = **f**on Ω^h to obtain a final approx.
- The basis of the strategy "nested iteration."

Putting the Ideas Together (2)

- Using the residual equation to relax on error:
 - □ Relax on A**u** = **f** on Ω^h to obtain an approximation.
 - Compute the residual $\mathbf{r} = \mathbf{f} A\mathbf{v}^{h}$.
 - Relax on the residual equation $A\mathbf{e} = \mathbf{r}$ on Ω^{2h} to obtain an approximation to the error \mathbf{e}^{2h} .
 - Correct the approximation obtained on $Ω^h$ with the error estimate obtained on $Ω^{2h}$: $\mathbf{v}^h = \mathbf{v}^h + \mathbf{e}^{2h}$.
- Basis of the strategy "correction scheme."
- How do we transfer errors between grids?

Intergrid Transfers; Interpolation(1)

- There is usually no advantage in using grid spacing with ratio other than 2.
- Transferring information form a coarse grid to a fine one is called interpolation or prolongation.
- There are, of course, many methods!

Linear interpolation: $I_{2h}^{h} \mathbf{v}^{2h} = \mathbf{v}^{h}$ $v_{2j}^{h} = v_{j}^{2h},$ $v_{2j+1}^{h} = \left(v_{j}^{2h} + v_{2j+1}^{2h}\right)/2, \quad 0 \le j \le \frac{n}{2} - 1.$

Intergrid Transfers; Interpolation(2)

- How well does this work?
- We can show that interpolation is most effective when the error is smooth.
- Nested iteration and Correction scheme both use interpolation, so are they only effective when the error is smooth?
- Happily, these processes provide a complement to relaxation that is most effective when the error is oscillatory.

Intergrid Transfers; Restriction

- Form fine to coarse (I_h^{2h}) .
- One obvious restriction operator is injection: $v_i^{2h} = v_{2i}^h$.
- An alternative is called full weighting: v_j^{2h} = ¹/₄(v_{2j-1}^h + 2v_{2j}^h + v_{2j+1}^h), 1≤ j≤ ⁿ/₂-1.

 Now we are ready to introduce our first multilevel scheme.

Two-Grid Correction Scheme(1)

$$\mathbf{v}^h \leftarrow MG(\mathbf{v}^h, \mathbf{f}^h).$$

- Relax v_1 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h with initial guess \mathbf{v}^h .
- Compute the fine-grid residual $\mathbf{r}^{h} = \mathbf{f}^{h} A^{h}\mathbf{v}^{h}$ and restrict it to the coarse grid.

Solve
$$A^{2h}e^{2h} = r^{2h}on \Omega^{2h}$$
.

- Interpolate the coarse-grid error and correct the fine grid approximation by $\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{e}^h$.
- Relax v_2 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h with initial guess \mathbf{v}^h .

Two-Grid Correction Scheme(2)

- In practice v_1 is often 1,2, or 3.
- Here is the fortunate complement that the scheme brings: Relaxation on the fine grid eliminates the oscillatory components of the error, leaving a relatively smooth error.

Numerical Example(1)

- Weighted Jacobi with $\omega = \frac{2}{3}$ is applied to the one-dimensional model problem on a grid with 64 points.
- The initial guess contains 16th and 40th modes. (one quite smooth and one quite oscillatory)
- The aforementioned two-grid correction scheme with $v_1 = v_2 = 3$ is used.

Numerical Example(2); Results

- After one relaxation sweep the 2-norm of the error has been diminished to 57% of the norm of the initial guess.
- After three sweeps the reduction is 36%.
- By one relaxation sweep on the coarse grid the error will be reduced to 26%.
- After three coarse-grid sweeps: 8%.
- Correcting the fine grid approximation and performing three relaxation sweeps: 3%.
- Once again to the coarse grid and then three relaxation sweeps: 1%.

More Advanced Schemes; V-Cycle(1) $\mathbf{v}^{h} \leftarrow V^{h}(\mathbf{v}^{h}, \mathbf{f}^{h}).$

- 1. Relax v_1 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h with a given initial guess \mathbf{v}^h .
- 2. If Ω^h = coarsest grid, then go to step 4. Else

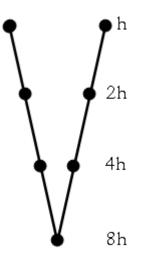
$$\mathbf{v}^{2h} \leftarrow \mathbf{0},$$
$$\mathbf{v}^{2h} \leftarrow V^{2h} (\mathbf{v}^{2h}, \mathbf{f}^{2h}).$$

7. Correct $\mathbf{v}^h \leftarrow \mathbf{v}^h + I_{2h}^h \mathbf{v}^{2h}$.

8. Relax v_2 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h .

More Advanced Schemes; V-Cycle(2)

- In a V-Cycle scheme we use the two-grid scheme within itself.
- Here is the schedule of grids for V-Cycle:



More Advanced Schemes; μ -Cycle(1)

$$\mathbf{v}^h \leftarrow M \mu^h \big(\mathbf{v}^h, \mathbf{f}^h \big).$$

- 1. Relax v_1 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h with a given initial guess \mathbf{v}^h .
- 2. If Ω^{h} = coarsest grid, then go to step 4. Else $f^{2h} \leftarrow I_{h}^{2h} (f^{h} - A^{h} v^{h}),$

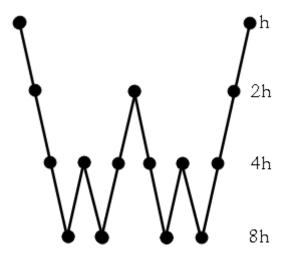
$$v^{2h} \leftarrow 0,$$

 $v^{2h} \leftarrow M\mu^{2h} (v^{2h}, f^{2h}) \ \mu \text{ times }.$

- 7. Correct $\mathbf{v}^h \leftarrow \mathbf{v}^h + I_{2h}^h \mathbf{v}^{2h}$.
- 8. Relax v_2 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ on Ω^h .

More Advanced Schemes; μ -Cycle(2)

- μ -cycle is an entire multigrid cycling scheme family and V-cycle is just one member of this family ($\mu = 1$).
- W-cycle, shown below, is the case with $\mu = 2$:



Full Multigrid V-Cycle(1)

- So far we have developed only the correction scheme.
- The nested iteration idea has yet to be explored.
- Nested iteration suggests solving a problem on Ω^{2h} to obtain an initial guess for solving the problem on Ω^{h} .
- But where does the initial guess for Ω^{2h} come from?

Full Multigrid V-Cycle(2)

$$\mathbf{v}^h \leftarrow FMG^h(\mathbf{f}^h).$$

2. If Ω^h =coarsest grid, set $\mathbf{v}^h \leftarrow 0$ and go to step 3.

Else
$$\mathbf{f}^{2h} \leftarrow I_h^{2h} (\mathbf{f}^h),$$

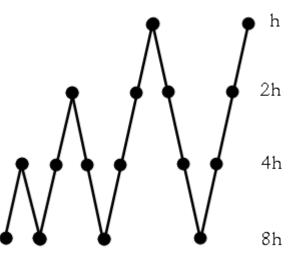
 $\mathbf{v}^{2h} \leftarrow FMG^{2h} (\mathbf{f}^{2h}).$

- 5. Correct $\mathbf{v}^h \leftarrow I_{2h}^h \mathbf{v}^{2h}$.
- 6. $\mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h) \quad v_0 \text{ times.}$

Full Multigrid V-Cycle(3)

- We do some extra work to find the best initial guess possible. But this is not only inexpensive, but easily pays for itself. The result is a very powerful algorithm.
- Here is the schedule

for FMG scheme in 4 levels:



Implementation

Writing a Code

- We now want to turn to more practical issues of writing a multigird program.
- The experiment of many practitioners suggests that such a program should be highly modular.
- This way, besides its simplicity, one can change different components of his code.
- We will see how effective that can be.

Data Structure(1)

- Choosing an appropriate data structure is also of great importance.
- One way is to declare a new structure that groups together all the associated information for each grid level.
- Going further in this area without pointing a specific language seems pointless since every discussion would soon be outdated!

Data Structure(2)

- In languages with more restrictive data structures, like MATLAB and FORTRAN, there seems to be a general agreement.
- That is the solutions and the right-side vectors on the various grids should be stored contiguously in single arrays (so two arrays).
- Actually, mutligrid codes started to "grow up" in such an environment.

Complexity(1)

- How much do the multigrid scheme cost in terms of storage and computation?
- Consider a *d*-dimensional grid with *n^d* points.
- For simplicity n is a power of two.
- On the finest grid we need n^d storage locations for each array (two arrays).
- From now on each grid needs 2^{-d} times as much storage as the finer grid before it.
- Adding these term give a geometric series.

Complexity(2)

- Storage= $2n^d (1+2^{-d}+2^{-2d}+...+2^{-nd}) < \frac{2n^d}{1-2^{-d}}$
- The storage costs of multigrid algorithm decreases relatively as the dimension of the problem increases.
- Same analysis gives an estimation of the computational costs of multigird mehtods.
- Note that in the results nest page the cost of intergrid transfers, typically 10-20% of the cost of the entire cycle, is neglected.

Complexity(3)

In a V-cycle with $v_1 = v_2 = 1$ each level is visited twice and grid Ω^{ph} requires p^{-d} work units, so the computational cast for a V-cycle is:

$$2\left(1+2^{-d}+2^{-2d}+\ldots+2^{-nd}\right) < \frac{2}{1-2^{-d}}WU.$$

With a slight modification for the FMG we can obtain:

$$\left(\frac{2}{1-2^{-d}}\right)\left(1+2^{-d}+2^{-2d}+\ldots+2^{-nd}\right) < \frac{2}{\left(1-2^{-d}\right)^2}WU.$$

Complexity(4); final points

- We again can see with increasing the dimension of the problem the relative computational cost decreases in both scheme.
- As expected, a single FMG cycle costs more than a single V-cycle (the difference is less in higher dimensions).
- To reach a final idea which one is more suitable we need to know how many cycles they need to give satisfactory results.

Numerical Example(1)

We solve the two-dimensional problem

$$-u_{xx} - u_{yy} = 2\left[\left(1 - 6x^2\right)y^2\left(1 - y^2\right) + \left(1 - 6y^2\right)x^2\left(1 - x^2\right)\right]$$

in unit square with zero on the boundaries.

We aim to

- Compare results using different relaxation, interpolation and restriction operators
- Make a conclusion about the effectiveness of the V-cycle and FMG schemes

Numerical Example(2)

- In comparing different operators more than what introduced before here we add halfinjection and cubic interpolation.
- Half-injection in one-dimension is simply half of the injection operator.
- Cubic interpolation in one-dimension is defined this way: $v_{2i}^{h} = v_{i}^{2h}$,

$$v_{2j+1}^{h} = \frac{1}{16} \left(-v_{j-1}^{2h} + 9v_{j}^{2h} + 9v_{j+1}^{2h} - v_{j+2}^{2h} \right)$$

Results(1); Different Operators

	Relaxation	Injection		Full Weighting		Half-Injection	
(v_1, v_2)	Scheme	Linear	Cubic	Linear	Cubic	Linear	Cubic
(1,0)	Jacobi	-	_	0.49	0.49	0.55	0.62
	GS	0.89	0.66	0.33	0.34	0.38	0.37
	RBGS	-	-	0.21	0.23	0.45	0.42
	Cost	1.00	1.25	1.13	1.39	1.01	1.26
(1,1)	Jacobi	0.94	0.56	0.35	0.34	0.54	0.52
	GS	0.16	0.16	0.14	0.14	0.45	0.43
	RBGS	-	-	0.06	0.05	0.12	0.16
	Cost	1.49	1.75	1.63	1.88	1.51	1.76
(2,1)	Jacobi	0.46	0.31	0.24	0.24	0.46	0.45
	GS	0.07	0.07	0.08	0.07	0.40	0.39
	RBGS	-	-	0.04	0.03	0.03	0.07
	Cost	1.99	2.24	2.12	3.37	1.51	1.76

Results(2); Different Operators

- At least in this problem cubic interpolation is noticeably more effective than linear one only when injection is used for restriction.
- Not surprisingly, you get what you pay for: better convergence factor comes with higher cost.
- Parameter selection largely depends on what we want: cost or performance?

Results(3); V-cycle or FMG?

- Here, comparing FMG(1,1) and V(1,2), for all grids FMG is less expensive than V-cycle.
- It confirms the fact that for converging to the level of discretization

	FMG(1,1)	V(2,1)	V(2,1)
	WU	cycles	WU
4	7/2	3	12
8	7/2	4	16
16	7/2	4	16
32	7/2	5	20
64	7/2	5	20
128	7/2	6	24
256	7/2	7	28
512	7/2	7	28
1024	7/2	8	32
2048	7/2	9	36

error, full multigrid methods are generally preferable to simple V-cycles.

Diagnostic Tools(1)

- Debugging can be the most difficult part of creating a successful program. Here is a short list of useful debugging techniques in evaluating a mutigrid code:
- 2. Methodical Plan: modular! Focus should be firstly on the solver.
- 3. Starting Simply: basic methods, simple problems.
- 4. Homogenous Problem: norms of the residual and the error.

Diagnostic Tools(2)

- Residual Printout: on each level the norm of the residual should decline to machine zero at a steady rate.
- 2. Error Graph: is it oscillatory after coarse-grid correction? Effectively smoothed by relaxation? Any unusual behavior?
- 3. Two-Level Cycles: it is necessary that the two-level scheme work, test it!
- There is no end to this list.

Nonlinear Problem

Nonlinearity

- Up to now everything was linear!
- Do we need to make any changes to treat nonlinear problems?
- Let's take a look at the most significant difference between linear and nonlinear systems.
- Consider the nonlinear system below (note the new notation):

$$A(\mathbf{u}) = \mathbf{f}$$

From the definition of the residual we find the new residual equation:

 $A(\mathbf{u}) - A(\mathbf{v}) = \mathbf{r}.$

- Even though $\mathbf{u} \mathbf{v} = \mathbf{e}$, we <u>cannot</u> conclude that $A(\mathbf{u}) A(\mathbf{v}) = A(\mathbf{e})$.
- Since the solver now needs to solve a nonlinear equation, it makes sense to take a look at a classical relaxation method for such a system.

Nonlinear Gauss-Seidel Relaxation

The same as linear GS, we form the j th equation and update the corresponding component:

$$v_j \leftarrow M_j(v_1, v_2, ..., v_{j-1}, v_{j+1}, ..., v_n), \quad 1 \le j \le n.$$

In cases where we cannot form the equation explicitly, the following system should be solved using a few steps of Newton method:

$$(A(\mathbf{v} + s\varepsilon_j))_j = \mathbf{f}_j, \quad 1 \le j \le n.$$

When *s* is found: $\mathbf{v} \leftarrow \mathbf{v} + s\varepsilon_j$

Newton-Multigrid

• The new residual equation can be written: 4(x + a) = 4(x)

$$A(\mathbf{v}+\mathbf{e})-A(\mathbf{v})=\mathbf{r}.$$

Expanding the first term in Taylor series about v and truncating the series after two terms, we have a linear equation:

$$J(\mathbf{v})\mathbf{e}=\mathbf{r},$$

This system is an approximation to the nonlinear system. One highly recommended option to solve it is multigrid.

Going Further...

- Newton-multigrid can be effective, but it does not use mutilgrid ideas to treat the nonlinearity directly.
- In a two-grid setting, the residual on the coarser grid appears as:

$$A^{2h}\left(\mathbf{v}^{2h}+\mathbf{e}^{2h}\right)-A^{2h}\left(\mathbf{v}^{2h}\right)=\mathbf{r}^{2h}.$$

We choose the coarse-grid residual to be the restriction of the fine-grid residual:

$$\mathbf{r}^{2h} = I_h^{2h} \mathbf{r}^h = I_h^{2h} \left(\mathbf{f}^h - A^h \left(\mathbf{v}^h \right) \right).$$

The Nonlinear Version of Multigrid

- But what about the current approximation?
- Using the same operator for the residual, we restrict the current approximation on the fine gird to the coarser grid.

$$\mathbf{v}^{2h} = I_h^{2h} \mathbf{v}^h.$$

Putting everything together in the residual equation and solving it gives the coarse-grid approximation for the error which can be interpolated to fine grid to correct the current approximation. This is FAS.

Full Approximation Scheme (FAS)

- FAS steps can be summarized this way:
 - Restrict the current approximation and its fien-grid residual to the coarse grid.
 - Solve this coarse-grid problem:

$$A^{2h}\left(\mathbf{u}^{2h}\right) = A^{2h}\left(\mathbf{v}^{2h}\right) + \mathbf{r}^{2h}.$$

- Compute the coarse-grid approximation to the error
 $e^{2h} = u^{2h} v^{2h}$.
- Interpolate the error approximation up to the fine grid and correct the current fine-grid approximation.

$$\mathbf{v}^h \leftarrow \mathbf{v}^h + I_{2h}^h \mathbf{e}^{2h}$$

FAS Comments(1)

- If the operator is linear FAS reduces to the linear two-grid scheme.
- The process stalls at and only at the exact solution.
- The second step of the FAS procedure involves a nonlinear problem itself. In a twolevel scheme it is solved with standard relaxation method such as nonlinear GS.
- A true FAS process would be done recursively.

FAS Comments(2)

- Thus, like its linear counterpart, FAS is usually implemented as a V-cycle or W-cycle scheme.
- The convergence of nonlinear iterations depend critically on a good initial guess. Using one FMG cycle <u>can</u> provide accuracy to the level of discretization (whether we use Newton-multigrid or FAS V-cycles).

Thank you!!