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Introduction
In numerical simulation, Partial Differential Equations (PDE) are solved to model some physical 
phenomenon. The PDEs are discretized by methods like Finite Differences, Finite Element Method, etc 
to obtain a linear system of equations of the following form: 

Ax = b 

where A is a matrix (n*n)

b is the known vector (n)

x is the unknown vector to be solved (n)

Such a system can be solved by direct methods like Gauss-Elimination if the system is small. For a 
system with large number of unknowns, the direct methods are not efficient due to increasing number 
of operations and the increasing memory requirements. Hence iterative methods are used to solve the 
linear system of equations. 

Notations
A matrix is symmetric positive definite if for every non-zero vector x

xTAx > 0

Quadratic form is defined as follows:
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The gradient of quadratic form is : 

If A is symmetric then this quadratic form reduces to: 
                     f' (x) = Ax - b 

Eigenvalues and Eigenvectors
For any n×n matrix A, a scalar λ and a nonzero vector v that satisfy the equation

Av=λv
are said to be the eigenvalue and the eigenvector of A.

If the matrix is symmetric, then the following properties hold:

(a)  the eigenvalues of A are real

(b)  eigenvectors associated with distinct eigenvalues are

       orthogonal

The matrix A is positive definite (or positive semidefinite) if and only if all eigenvalues of A are 
positive (or nonnegative).

Why should we care about the eigenvalues? Iterative methods often depend on applying A to a vector 
over and over again:

(a) If |λ|<1, then Aiv=λiv vanishes as i approaches infinity

(b) If |λ|>1, then Aiv=λiv will grow to infinity.

Some more terms: 
Spectral radius of a matrix A is defined as the maximum value of eigenvalue.

ρ(A)= max|λi|

Condition number is the ratio of the maximum and minimum eigenvalues. K=
max

min

Error is defined as the difference between the exact value and the calculated approximate value. 

e = xexact – xapp
Typically the exact value is not known and we try to get an approximation for this unknown by solving 



the linear system in iterative manner. Hence the residual is calculated. The residual indicates how far 
we are from the correct value of b and is defined as:

r = b-A.xapp

Preconditioning
Preconditioning is a technique for improving the condition number of a matrix. Suppose that M is a 
symmetric, positive-definite matrix that approximates A, but is easier to invert. We can solve Ax = b 
indirectly by solving

M-1Ax = M-1b

There are different type of preconditioners:

■ Perfect preconditioner
 M = A

In this case condition number  is one and the  solution is reached in one iteration, however  it is 
not a very useful technique as calculating the inverse is a tedious task. 

■ Diagonal preconditioner
Using a diagonal as a preconditioner is a trivial however mediocre technique. 

■ Incomplete Cholesky

  The Choleksy factorization of a positive definite matrix A  is A=LLT where L is a lower 
triangular matrix. However this is not always stable

 

Stationary and non-stationary Iterative Methods
There are two types of iterative methods. Stationary methods for Ax = b:

 x
(k+1)

=Rx
(k)

+ c 
neither R  or c depend upon the iteration counter k.. These methods are older, simpler to understand and 
usually not so effective. Examples of such methods are Jacobi, Gauss-Seidel, SOR, etc.

Matrix A can be split as follows:  A = M - K with nonsingular M

Ax= Mx -Kx = b 

x = M
-1

Kx – M
-1

b = Rx +c 



Non-stationary methods:
Nonstationary methods differ from stationary methods in that the computations involve information

that changes at each iteration. Typically, constants are computed by taking inner products of

residuals or other vectors arising from the iterative method

Examples:

Conjugate gradient (CG)

Minimum Residual (MINRES)

Generalized Minimal Residual (GMRES)

BiConjugate Gradient (BiCG)

Quasi Minimal Residual (QMR)

Conjugate Gradient Squared (CGS)

Krylov subspace 

Кj is the linear combinations of b, Ab,...,A j−1b. 
Krylov matrix 

Kj =[ b Ab A2b ... Aj−1b ] . 

The methods to construct a basis qj  for Кj are Arnoldi's method and Lanczos method.

Krylov subspace methods fall in three different classes:
•  Ritz-Galerkin approach: rj=b -Axj is orthogonal to Кj  (Conjugate Gradient)
•  Minimum Residual approach rj has minimum norm for xj in Кj (GMRES and MINRES)

•  Petrov-Galerkin approach: rj is orthogonal to a different space Кj(AT) (Biconjugate 
Gradient) 

Arnoldi's Method
      The best basis q1,...,qj for the Krylov subspace Кj  is orthonormal. Each new qj comes from 

orthogonalizing t = Aqj−1 to the basis vectors q1,...,qj that are already chosen. The iteration to 
compute these orthonormal q’s is Arnoldi’s method. 
The algorithm is as follows:
q1 = b / ||b|| % Normalize b to ||q1|| = 1 
  for j = 1,...,n−1 % Start computation of qj+1 

       t = Aqj % one matrix multiplication 
      for i = 1,...,j % t is in the space Kj+1



          hij = qT
i % hijqT

i  =projection of t on qi  
  t = t - hijqi % Subtract that projection 
      end; % t is orthogonal to q1,...,qj

     
hj+1,j   = ||t|| % Compute the length of t

    qj+1 = t / hj+1,j % Normalize t to  ||qj+1||=1
end %q1,... qn are orthnormal 
AQ n-1= Q n Hn,n-1                            Hn,n-1is upper Hessenberg matrix   

Lanczos Method
Lanczos method is specialized Arnoldi iteration, if A is symmetric (real) 

 Hn-1,n-1 = QT
n-1 A Qn-1

 
Hn-1,n-1 is tridiagonal and this means that in the orthogonalization process, each new vector has 
to be orthogonalized with respect to the previous two vectors only,since the inner products 
vanish.  

Β0=0, q0 =0,  b= arbitrary, q1=b / ||b|| 
  for i = 1,...,n−1 

       v = Aqj 

       αi = qT
i v

       v = v –Βi-1 qi-1 - αiq
      Βi   = ||v|| 

    qj+1 = v / Βi

end

Conjugate Gradient (CG)
Conjugate gradient methods are based upon steepest descent method. Fundamental underlying structure 
for almost all the descent algorithms: 

• Start with an initial point

• Determine according to a fixed rule a direction of movement

• Move in that direction to a relative minimum of the objective function

• At the new point, a new direction is determined and the process is repeated. 



• The difference between different algorithms depends upon the rule by which successive 
directions of movement are selected

In the method of steepest descent, one starts with an arbitrary point x(0) and takes a series of steps x(1), 
x(2), … until we are satisfied that we are close enough to the solution. When taking the step, one 
chooses the direction in which f decreases most quickly, i.e.  f’(x(i)) = b-Ax(i)

The error and residual are defined as :

error vector: e(i)=x(i)-x

residual: r(i)=b-Ax(i)

From Ax=b, it follows that

r(i)=-Ae(i)=-f’(x(i))

Residual is direction of Steepest Descent. 

The disadvantage of using this recurrence is that the residual sequence is  determined without any 
feedback from the value of x(i), so that round-off errors may cause x(i) to converge to some point near 
x.

The conjugate gradient method overcomes the disadvantage of steepest descent method by picking up a 
set of A-orthogonal search directions and taking exactly one step in each search direction. Hence the 
solution will be reached in n steps.

The conjugate gradient algorith is as follows:

x0 =  0,    r0 =  b,    d0 =  r0
for  k  =  1, 2, 3, . . .

αk =  (rTk-1rk-1) / (dTk-1Adk-1)  %step length

xk  =  xk-1 + αk dk-1                             %approx solution

 rk =  rk-1 – αk Adk-1                           %residual

βk =  (rTk rk) / (rTk-1rk-1)          %improvement

dk  =  rk + βk dk-1                                 %search direction

Minimum Residual Approaches (MINRES and GMRES) 
If A is not symmetric positive definite, then CG is not suitable to solve Ax=b. Hence Minimum 
Residual Methods like MINRES (Minimum Residual approach) and  GMRES (Generalized 
Minimum Residual Approaches).
Choose xj in the Krylov subspace Кj so that ||b - Axj|| is minimal. The first orthonormal vectors 



q1,...,qj go in the columns Qj so Qj
TQj= I

Setting xj = Qj y
|| rj ||= ||b - Axj|| = ||b – AQjy|| = ||b – Qj+1 Hj+,1,jy||

Using first j columns of Arnoldi's formula AQ = QH

First j columns of QH =

The problem becomes to choose y to minimize

                                    || rj ||= ||QT
j+1b – Hj+,1,jy||

which is a least squares problem. 

Using zeros in H and Qt
j+1b to find a fast algorithm that computes y.

GMRES (Generalised Minimal Residual Approach)
A is not symmetric and the upper triangular part of H can be full.
                 All previously computed vectors have to be stored.

MINRES:(Minimal Residual Approach)
A is symmetric (likely indefinite) and H is tridiagonal.  
               Avoids storage of all basis vectors for the Krylov subspace

GMRES algorithm is as follows:
q1 = b / ||b || 
for j = 1, 2, 3...
    step j of Arnoldi iteration 

    Find y to minimize || rj ||= ||QT
j+1b – Hj+,1,jy||

    xj = Qj y



There are two vairants of GMRES: Full-GMRES and GMRES(m)
Full-GMRES :
The upper triangle in H can be full and step j becomes expensive and possibly it is inaccurate 
as j  increases. 

GMRES(m):
Restarts the GMRES algorithm every m  steps However tricky to choose m.

Petrov-Galerkin Methods
The Petrov-Galerkin methods are the third category of Krylov subspace  methods, which are based on 
finding x(k) such that the residual is orthogonal to some other suitable k-dimensioned subspace.. 

Lanczos Bi-orthogonalisation process which is an extension of symmetric Lanczos algorithm is used to 
obtain a pair of bi-orthogonal subspaces.

BiCG (Bi-Conjugate Gradient)
Bi-CG finds two mutually orthogonal sequences r0 and r0

*
 

 

QMR (Quasi Minimal Residual)
BiCG often has irregular convergence behaviour. The implicit LU decomposition of reduced 
tridiagonal system may not exist, resulting in breakdown of BiCG. QMR solves the reduced tridiagonal 
system in least square sense. QMR uses unsymmetric Lanczos algorithm to generate a basis for the 
Krylov subspaces. The lookahead technique avoids breakdowns during Lanczos process and makes 



QMR robust.

CGS (Conjugate Gradient Squared)
CGS is another variatn of Petrov-Galerkin approach and is often faster compared to BiCG however it 
has a irregular convergence behaviour. 
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