Iterative methods for Linear System

JASS 2009

Student: Rishi Patil
Advisor: Prof. Thomas Huckle
Outline

• Basics:
 - Matrices and their properties
 - Eigenvalues, Condition Number

• Iterative Methods
 - Direct and Indirect Methods

• Krylov Subspace Methods
 - Ritz Galerkin: CG
 - Minimum Residual Approach: GMRES/MINRES
 - Petrov-Galerkin Method: BiCG, QMR, CGS
Basics

• **Linear system of equations**
 \[Ax = b \]

• **A Hermitian matrix** (or self-adjoint matrix) is a square matrix with complex entries which is equal to its own conjugate transpose, that is, the element in the \(i \)th row and \(j \)th column is equal to the complex conjugate of the element in the \(j \)th row and \(i \)th column, for all indices \(i \) and \(j \)

\[A = \begin{bmatrix} 3 & 2 + i \\ 2 - i & 1 \end{bmatrix} \]

• **Symmetric** if \(a_{ij} = a_{ji} \)
• **Positive definite if, for every nonzero vector \(x \)**
 \[X^T A x > 0 \]
• **Quadratic form:**
 \[f(x) = \frac{1}{2} x^T A x - b^T x + c \]
• **Gradient of Quadratic form:**
 \[f'(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} = \frac{1}{2} A^T x + \frac{1}{2} A x - b \]
Various quadratic forms

(a) Positive-definite matrix

(b) Negative-definite matrix

(c) Singular positive-indefinite matrix

(d) Indefinite matrix
Various quadratic forms
Eigenvalues and Eigenvectors

For any $n \times n$ matrix A, a scalar λ and a nonzero vector v that satisfy the equation

$Av = \lambda v$

are said to be the eigenvalue and the eigenvector of A.

- If the matrix is **symmetric**, then the following properties hold:
 1. the eigenvalues of A are real
 2. eigenvectors associated with distinct eigenvalues are orthogonal

- The matrix A is **positive definite** (or positive semidefinite) if and only if all eigenvalues of A are positive (or nonnegative).
Eigenvalues and Eigenvectors

Why should we care about the eigenvalues? *Iterative methods often depend on applying A to a vector over and over again:*

(a) If $|\lambda| < 1$, then $A^i v = \lambda^i v$ vanishes as i approaches infinity.

(b) If $|\lambda| > 1$, then $A^i v = \lambda^i v$ will grow to infinity.
Some more terms:

Spectral radius of a matrix is: $\rho(A) = \max |\lambda_i|$

Condition number is: $K = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$

Error: $e = x_{\text{exact}} - x_{\text{app}}$

Residual: $r = b - A \cdot x_{\text{app}}$
Preconditioning

Preconditioning is a technique for improving the condition number of a matrix. Suppose that M is a symmetric, positive-definite matrix that approximates A, but is easier to invert. We can solve $Ax = b$ indirectly by solving

$$M^{-1}Ax = M^{-1}b$$

Type of preconditioners:

- **Perfect** preconditioner $M = A$

 Condition number $= 1$ \rightarrow solution in one iteration

 but $Mx = b$ is not useful preconditioner

- **Diagonal** preconditioner, trivial to invert but mediocre

- **Incomplete Cholesky**: $A \rightarrow LL^T$

 • Not always stable
Stationary and non-stationary methods

Stationary methods for $Ax = b$:

$$x^{(k+1)} = Rx^{(k)} + c$$

neither R or c depend upon the iteration counter k.

• Splitting of A
 $A = M - K$ with nonsingular M
 $Ax = Mx - Kx = b$
 $x = M^{-1}Kx - M^{-1}b = Rx + c$

Examples:
 • Jacobi method
 • Gauss-Seidel
 • Successive Overrelaxation (SOR)
Jacobi Method

• Splitting for Jacobi Method, \(M=D \) and \(K=L + U \)

\[
\begin{align*}
 x^{(k+1)} &= D^{-1}((L+U)x^{(k)} + b) \\
 \text{solve for } x_i \text{ from equation } i, \text{ assuming other entries fixed}
\end{align*}
\]

\[
\begin{align*}
 \text{for } i = 1 \text{ to } n \\
 \text{for } j = 1 \text{ to } n \\
 u_{i,j}^{(k+1)} &= (u_{i-1,j}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i,j+1}^{(k)})/4
\end{align*}
\]
Gauss-Siedel Method and SOR(Successive-Over-Relaxation)

Splitting for Jacobi Method, $M=D-L$ and $K=U$

$$x^{(k+1)} = (D-L)^{-1}(U x^{(k)} + b)$$

While looping over the equations, use the most recent values x_i for $i = 1$ to n

for $i = 1$ to n
 for $j = 1$ to n
 $$u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k+1)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k+1)} + u_{i,j+1}^{(k)})/4$$

Splitting for SOR:

$$x^{(k+1)} = \omega x_i^{(k+1)} + (1-\omega) x_i^{(k)}$$

OR

$$x^{(k+1)} = (D-\omega L)^{-1}(\omega U + (1-\omega) D) x^{(k)} + \omega (D-\omega L)^{-1} b$$
Stationary and non-stationary methods

- Non-stationary methods:
 - The constant are computed by taking inner products of residual or other vectors arising from the iterative method
 - Examples:
 - Conjugate gradient (CG)
 - Minimum Residual (MINRES)
 - Generalized Minimal Residual Residual (GMRES)
 - BiConjugate Gradient (BiCG)
 - Quasi Minimal Residual (QMR)
 - Conjugate Gradient Squared (CGS)
Descent Algorithms

Fundamental underlying structure for almost all the descent algorithms:

- Start with an initial point
- Determine according to a fixed rule a direction of movement
- Move in that direction to a relative minimum of the objective function
- At the new point, a new direction is determined and the process is repeated.
- The difference between different algorithms depends upon the rule by which successive directions of movement are selected
The Method of Steepest Descent

• In the method of steepest descent, one starts with an arbitrary point \(x_{(0)} \) and takes a series of steps \(x_{(1)}, x_{(2)}, \ldots \) until we are satisfied that we are close enough to the solution.

• When taking the step, one chooses the direction in which \(f \) decreases most quickly, i.e.

 \[-f'(x_{(i)}) = b \ - \ Ax_{(i)} \]

 error vector: \(e_{(i)} = x_{(i)} - x \)

 residual: \(r_{(i)} = b - Ax_{(i)} \)

• From \(Ax = b \), it follows that

 \(r_{(i)} = -Ae_{(i)} = -f'(x_{(i)}) \)

Residual is direction of Steepest Descent
The Method of Steepest Descent

Starting at (-2,-2) take steps in direction of steepest descent of f.

The parabola is the intersection of surfaces.

Find the point of intersection of these surfaces that minimizes f.

The gradient of the bottommost point is orthogonal to gradient of previous step.
The Method of Steepest Descent
The Method of Steepest Descent

• The algorithm

\[r_{(i)} = b - Ax_{(i)} \]

\[\alpha_{(i)} = \frac{r_{(i)}^T r_{(i)}}{r_{(i)}^T Ar_{(i)}} \]

\[x_{(i+1)} = x_{(i)} + \alpha_{(i)} r_{(i)} \implies e_{(i+1)} = e_{(i)} + \alpha_{(i)} r_{(i)} \]

• To avoid one matrix-vector multiplication, one uses

\[r_{(i+1)} = r_{(i)} - \alpha_{(i)} Ar_{(i)} \]

The disadvantage of using this recurrence is that the residual sequence is determined without any feedback from the value of \(x_{(i)} \), so that round-off errors may cause \(x_{(i)} \) to converge to some point near \(x \).
Steepest Descent Problem

• The gradient at the minimum of a line search is orthogonal to the direction of that search ⇒ the steepest descent algorithm tends to make right angle turns, taking many steps down a long narrow potential well. Too many steps to get to a simple minimum.
The Method of Conjugate Directions

Basic idea:
• Pick a set of orthogonal search directions $d_{(0)}$, $d_{(1)}$, … , $d_{(n-1)}$
• Take exactly one step in each search direction to line up with x
• Solution will be reached in n steps

Mathematical formulation:
1. For each step we choose a point
 \[x_{(i+1)} = x_{(i)} + \alpha_{(i)} d_{(i)} \]
2. To find $\alpha_{(i)}$, we use the fact that $e_{(i+1)}$ is orthogonal to $d_{(i)}$
The Method of Conjugate Directions

- To solve the problem of not knowing $e^{(i)}$, one makes the search directions to be A-orthogonal rather than orthogonal to each other, i.e.:

$$d^{T}_{(i)}Ad_{(j)} = 0$$
The Method of Conjugate Directions

• The new requirement is now that $\mathbf{e}_{(i+1)}$ is A-orthogonal to $\mathbf{d}_{(i)}$

$$
\frac{d}{d\alpha} f(\mathbf{x}_{(i+1)}) = f'(\mathbf{x}_{(i+1)})^T \frac{d\mathbf{x}_{(i+1)}}{d\alpha} = 0
$$

$$
\mathbf{r}_{(i+1)}^T \mathbf{d}_{(i)} = 0
$$

$$
\mathbf{d}_{(i)}^T \mathbf{A} \mathbf{e}_{(i+1)} = 0
$$

$$
\mathbf{d}_{(i)}^T \mathbf{A} \left(\mathbf{e}_{(i)} + \alpha_{(i)} \mathbf{d}_{(i)} \right) = 0
$$

$$
\alpha_{(i)} = \frac{\mathbf{d}_{(i)}^T \mathbf{r}_{(i)}}{\mathbf{d}_{(i)}^T \mathbf{A} \mathbf{d}_{(i)}}
$$

If the search vectors were the residuals, this formula would be identical to the method of steepest descent.
The Method of Conjugate Directions

- Calculation of the A-orthogonal search directions by a **conjugate Gram-Schmidt process**
 1. Take a set of linearly independent vectors $u_0, u_1, \ldots, u_{n-1}$
 2. Assume that $d_{(0)} = u_0$
 3. For $i > 0$, take an u_i and subtracts all the components from it that are not A-orthogonal to the previous search directions

$$d_{(i)} = u_{(i)} + \sum_{j=0}^{i-1} \beta_{ij} d_{(j)}, \quad \beta_{ij} = -\frac{u_{(i)}^T A d_{(j)}}{d_{(j)}^T A d_{(j)}}$$

![Diagram](image)
The Method of Conjugate Directions

• The method of Conjugate Gradients is simply the method of conjugate directions where the search directions are constructed by conjugation of the residuals, i.e. \(u_i = r_i \)

• This allows us to simplify the calculation of the new search direction because

\[
\beta_{ij} = \begin{cases}
 \frac{1}{\alpha_{(i-1)}} \frac{r_{(i)}^T r_{(i)}}{d_{(i-1)}^T A d_{(i-1)}} = \frac{r_{(i)}^T r_{(i)}}{r_{(i-1)}^T r_{(i-1)}} & i = j + 1 \\
 0 & i > j + 1
\end{cases}
\]

• The new search direction is determined as a linear combination of the previous search direction and the new residual

\[
d_{(i+1)} = r_{(i+1)} + \beta_i d_{(i)}
\]
The Method of Conjugate Directions

\[x_0 = 0, \quad r_0 = b, \quad d_0 = r_0 \]

for \(k = 1, 2, 3, \ldots \)

\[\alpha_k = \frac{(r_{k-1}^T r_{k-1})}{(d_{k-1}^T A d_{k-1})} \] step length

\[x_k = x_{k-1} + \alpha_k d_{k-1} \] approx solution

\[r_k = r_{k-1} - \alpha_k A d_{k-1} \] residual

\[\beta_k = \frac{(r_k^T r_k)}{(r_{k-1}^T r_{k-1})} \] improvement

\[d_k = r_k + \beta_k d_{k-1} \] search direction

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage
Krylov subspace

Krylov subspace K_j is the linear combinations of $b, Ab, ..., A^{j-1}b$.

Krylov matrix $K_j = [b \ Ab \ A^2b \ ... \ A^{j-1}b]$.

Methods to construct a basis for K_j:

Arnoldi’s method and Lanczos method

Approaches to choosing a good x_j in K_j:

- **Ritz-Galerkin approach**: $r_j = b - Ax_j$ is orthogonal to K_j (Conjugate Gradient)
- **Minimum Residual approach**: r_j has minimum norm for x_j in K_j (GMRES and MINRES)
- **Petrov-Galerkin approach**: r_j is orthogonal to a different space $K_j(AT)$ (Biconjugate Gradient)
Arnoldi’s Method

The best basis q_1, \ldots, q_j for the Krylov subspace K_j is orthonormal. Each new q_j comes from orthogonalizing $t = Aq_{j-1}$ to the basis vectors q_1, \ldots, q_j that are already chosen. The iteration to compute these orthonormal q’s is Arnoldi’s method.

$$q_1 = b / \|b\|$$
for $j = 1, \ldots, n-1$
$$t = Aq_j$$
for $i = 1, \ldots, j$
$$h_{ij} = q_i^T$$
$$t = t - h_{ij}q_i$$
end;
$$h_{j+1,j} = \|t\|$$
$$q_{j+1} = t / h_{j+1,j}$$
end

$AQ_{n-1} = Q_n H_{n,n-1}$

$H_{n,n-1}$ is upper Hessenberg matrix
Lanczos Method

Lanczos method is specialized Arnoldi iteration, if A is symmetric (real)

$$H_{n-1,n-1} = Q^T_{n-1} A Q_{n-1}$$

$H_{n-1,n-1}$ is tridiagonal and this means that in the orthogonalization process, each new vector has to be orthogonalized with respect to the previous two vectors only, since the inner products vanish.

$B_0 = 0$, $q_0 = 0$, $b = \text{arbitrary}$, $q_1 = b / \|b\|$

for $i = 1, \ldots, n-1$

$$v = Aq_i$$

$$a_i = q^T_i v$$

$$v = v - B_{i-1} q_{i-1} - a_i q$$

$$B_i = \|v\|$$

$$q_{i+1} = v / B_i$$

end
Minimum Residual Methods

Problem: If A is **not symmetric positive definite**, CG is not guaranteed to solve $Ax=b$.

Solution: Minimum Residual Methods.
Choose x_j in the Krylov subspace K_j so that $\|b - Ax_j\|$ is minimal.

The first orthonormal vectors q_1, \ldots, q_j go in the columns Q_j so $Q_j^TQ_j = I$.
Setting $x_j = Q_j y$

$\| r_j \| = \|b - Ax_j\| = \|b - AQ_j y\| = \|b - Q_{j+1} H_{j+1,j} y\|$

Using first j columns of Arnoldi’s formula $AQ = QH$

First j columns of $QH = \begin{bmatrix} q_1 & \cdots & q_{j+1} \end{bmatrix} \begin{bmatrix} h_{11} & \cdots & h_{1j} \\ h_{12} & \ddots & \vdots \\ \vdots & \ddots & h_{jj} \\ h_{j+1,1} & \cdots & h_{j+1,j} \end{bmatrix}$
Minimum Residual Methods

The problem becomes:
Choose \(y \) to minimize
\[
\| r_j \| = \| Q_{j+1}^T b - H_{j+1,j} y \|
\]
This is least squares problem.
Using zeros in \(H \) and \(Q_{j+1}^T b \) to find a fast algorithm that computes \(y \).

GMRES (Generalised Minimal Residual Approach)

*\(A \) is *not symmetric* and the upper triangular part of \(H \) can be full.
All previously computed vectors have to be stored.

MINRES:(Minimal Residual Approach)

\(A \) is symmetric (likely indefinite) and \(H \) is tridiagonal.
Avoids storage of all basis vectors for the Krylov subspace

Aim: to clear out the non-zero diagonal below the main diagonal of \(H \).
This is done by *Givens rotations*
GMRES

Algorithm: GMRES

\[q_1 = \frac{b}{\|b\|} \]

for \(j = 1, 2, 3... \)

step j of Arnoldi iteration

Find y to minimize \(\| r_j \| = \| Q_{j+1}^T b - H_{j+1,j} y \| \)

\[x_j = Q_j y \]

Full-GMRES

The upper triangle in \(H \) can be full and step \(j \) becomes expensive and possibly it is inaccurate as \(j \) increases.

GMRES\((m)\)

Restarts the GMRES algorithm every \(m \) steps However tricky to choose \(m \).
Petrov-Galerkin approach

- r_j is orthogonal to a different space $\text{K}_j(\text{A}^T)$

- BiCG (Bi-Conjugate Gradient)
- QMR (Quasi Minimum Residual)
- CGS (Conjugate Gradient Squared)
Lanczos Bi-Orthogonalization Procedure

- Extension of the symmetric Lanczos algorithm
- Builds a pair of bi-orthogonal bases for the two subspaces $K_m(A, v_1)$ and $K_m(A^T, w_1)$

Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$

Set $\beta_1 = \delta_1 = 0$, $w_0 = v_0 = 0$

For $j = 1, 2, \ldots, m$ Do:

\[\alpha_j = (Av_j, w_j) \]
\[\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1} \]
\[\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1} \]
\[\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}. \text{ If } \delta_{j+1} = 0 \text{ Stop} \]
\[\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1} \]
\[w_{j+1} = \hat{w}_{j+1}/\beta_{j+1} \]
\[v_{j+1} = \hat{v}_{j+1}/\delta_{j+1} \]

EndDo
Bi-Conjugate Gradient (BiCG)

Compute $r_0 := b - Ax_0$. Choose r_0^* such that $(r_0, r_0^*) \neq 0$.

Set, $p_0 := r_0$, $p_0^* := r_0^*$

For $j = 0, 1, \ldots$, until convergence Do:

\[
\alpha_j := (r_j, r_j^*) / (Ap_j, p_j^*)
\]

\[
x_{j+1} := x_j + \alpha_j p_j
\]

\[
r_{j+1} := r_j - \alpha_j Ap_j
\]

\[
r_{j+1}^* := r_j^* - \alpha_j A^T p_j^*
\]

\[
\beta_j := (r_{j+1}, r_{j+1}^*) / (r_j, r_j^*)
\]

\[
p_{j+1} := r_{j+1} + \beta_j p_j
\]

\[
p_{j+1}^* := r_{j+1}^* + \beta_j p_j^*
\]

EndDo
Quasi Minimum Residual (QMR)

- QMR uses unsymmetric Lanczos algorithm to generate a basis for the Krylov subspaces
- The lookahead technique avoids breakdowns during Lanczos process and makes QMR robust.

\[r_0 = b - Ax_0 \text{ and } \gamma_0 := \|r_0\|_2, \quad w_1 := v_1 := r_0 / \gamma_1 \]

For \(m = 1, 2, \ldots \), until convergence Do:

- Compute \(\alpha_m, \delta_{m+1} \) and \(\nu_{m+1}, \omega_{m+1} \) as in Lanczos Algor.

Update the QR factorization of \(\tilde{T}_m \), i.e.,

- Apply \(\Omega_i, i = m - 2, m - 1 \) to the \(m \)-th column of \(\tilde{T}_m \)

- Compute the rotation coefficients \(c_m, s_m \)

Apply rotation \(\Omega_m \), to \(\tilde{T}_m \) and \(\tilde{g}_m \), i.e., compute:

\[\gamma_{m+1} := -s_m \gamma_m; \quad \gamma_m := c_m \gamma_m; \text{ and } \alpha_m := c_m \alpha_m + s_m \delta_{m+1} \]
\[\rho_m = \left(v_m - \sum_{i=m-2}^{m-1} t_{im} p_i \right) / t_{mm} \]
\[x_m = x_{m-1} + \gamma_m \rho_m \]

If \(|\gamma_{m+1}| \) is small enough Stop

EndDo
Conjugate Gradient Squared (CGS)

Compute $r_0 := b - Ax_0$; r_0^* arbitrary.

Set $p_0 := u_0 := r_0$.

For $j = 0, 1, 2 \ldots$, until convergence Do:

\[
\begin{align*}
\alpha_j &= (r_j, r_0^*) / (Ap_j, r_0^*) \\
q_j &= u_j - \alpha_j Ap_j \\
x_{j+1} &= x_j + \alpha_j (u_j + q_j) \\
r_{j+1} &= r_j - \alpha_j A (u_j + q_j) \\
\beta_j &= (r_{j+1}, r_0^*) / (r_j, r_0^*) \\
u_{j+1} &= r_{j+1} + \beta_j q_j \\
p_{j+1} &= u_{j+1} + \beta_j (q_j + \beta_j p_j)
\end{align*}
\]

EndDo
Summary

• Stationary Iterative Solvers:
 • Jacobi, Gauss-Seidel, SOR

• Non-Stationary Solvers:
 • Krylov subspace methods
 • Conjugate Gradient
 • Symmetric positive definite systems
 • GMRES and MINRES
 • Non-symmetric matrices, but expensive
 • Bi-CG
 • Non-symmetric, two matrix-vector product
 • QMR
 • Non-symmetric, avoids irregular convergence of BiCG
 • CGS
 • Non-symmetric, faster than BICG, does not require transpose
References

• An Introduction to the Conjugate Gradient Method Without the Agonizing Pain *Jonathan Richard Shewchuk* August 4, 1994
• Closer to the solution: Iterative linear solvers – *Gene h. Golub*, *Henk A. Van der Vorst*
• Krylov subspaces and Conjugate Gradient- *Gilbert Strang*
Thank You!