Iterative methods for Linear System

JASS 2009

Student: Rishi Patil
Advisor: Prof. Thomas Huckle

Outline

-Basics:

- Matrices and their properties
- Eigenvalues, Condition Number
-Iterative Methods
- Direct and Indirect Methods
- Krylov Subspace Methods
- Ritz Galerkin: CG
- Minimum Residual Approach : GMRES/MINRES
- Petrov-Gaelerkin Method: BiCG, QMR, CGS

Basics

-Linear system of equations

$A x=b$

-A Hermitian matrix (or self-adjoint matrix) is a square matrix with complex entries which is equal to its own conjugate transpose, that is, the element in the i th row and j th column is equal to the complex conjugate of the element in the j th row and i th column, for

$$
\mathrm{A}=\left[\begin{array}{cc}
3 & 2+i \\
2-i & 1
\end{array}\right]
$$ all indices i and j

- Symmetric if $\mathrm{a}_{i j}=\mathrm{a}_{j i}$
- Positive definite if, for every nonzero vector x

$$
\mathbf{X}^{\mathrm{T}} \mathbf{A x}>0
$$

- Quadratic form:

$$
\begin{aligned}
& f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A x}-\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathrm{c} \\
& \text { Iratic form: } \\
& \quad \mathrm{f}^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial}{\partial \mathrm{x}_{1}} \mathrm{f}(\mathbf{x}) \\
\vdots \\
\frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{f}(\mathbf{x})
\end{array}\right]=\frac{1}{2} \mathbf{A}^{\mathrm{T}} \mathbf{x}+\frac{1}{2} \mathbf{A x}-\mathbf{b}
\end{aligned}
$$

Various quadratic forms

Various quadratic forms

Eigenvalues and Eigenvectors

For any $n \times n$ matrix \mathbf{A}, a scalar λ and a nonzero vector \mathbf{v} that satisfy the equation

$\mathbf{A v}=\lambda \mathbf{v}$

are said to be the eigenvalue and the eigenvector of \mathbf{A}.
-If the matrix is symmetric, then the following properties hold:
(a) the eigenvalues of \mathbf{A} are real
(b) eigenvectors associated with distinct eigenvalues are orthogonal
-The matrix \mathbf{A} is positive definite (or positive semidefinite) if and only if all eigenvalues of \mathbf{A} are positive (or nonnegative).

Eigenvalues and Eigenvectors

Why should we care about the eigenvalues? Iterative methods often depend on applying \boldsymbol{A} to a vector over and over again:

(a) If $|\lambda|<1$, then $\mathbf{A}^{i} \mathbf{v}=\lambda^{i} \mathbf{v}$ vanishes as i approaches infinity

(b) If $|\lambda|>1$, then $\mathbf{A}^{i} \mathbf{v}=\lambda^{i} \mathbf{v}$ will grow to infinity.

Some more terms:

Spectral radius of a matrix is: $\rho(\mathbf{A})=\max \left|\lambda_{\mathrm{i}}\right|$
Condition number is : $K=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$
Error: $\mathbf{e}=\mathbf{x}_{\text {exact }}-\mathbf{x}_{\text {app }}$

Residual: $\mathbf{r}=\mathbf{b}-\mathbf{A} \cdot \mathbf{x}_{\text {app }}$

Preconditioning

Preconditioning is a technique for improving the condition number of a matrix. Suppose that M is a symmetric, positive-definite matrix that approximates A , but is easier to invert. We can solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ indirectly by solving

$$
M^{-1} A x=M^{-1} b
$$

Type of preconditioners:
-Perfect preconditioner $M=A$
Condition number $=1 \rightarrow$ solution in one iteration
but $M x=b$ is not useful preconditioner
-Diagonal preconditioner, trivial to invert but mediocre
-Incomplete Cholesky: $A \rightarrow L L^{\top}$

- Not always stable

Stationary and non-stationary methods

Stationary methods for $A x=b$:
$x^{(k+1)}=\mathrm{Rx}^{(\mathrm{k})}+\mathrm{c}$ neither R or c depend upon the iteration counter k.

- Splitting of A
$A=M-K$ with nonsingular M
$A x=M x-K x=b$
$x=M^{-1} K x-M^{-1} b=R x+c$
Examples:
- Jacobi method
- Gauss-Seidel
- Successive Overrelaxation (SOR)

Jacobi Method

- Splitting for Jacobi Method, $M=D$ and $K=L+U$

$$
x^{(k+1)}=D^{-1}\left((L+U) x^{(k)}+b\right)
$$

solve for x_{i} from equation i, assuming other entries fixed

```
for \(\mathrm{i}=1\) to n
    for \(\mathrm{j}=1\) to n
    \(u_{i, j}{ }^{(k+1)}=\left(u_{i-1, j}{ }^{(k)}+u_{i+1, j}{ }^{(k)}+u_{i, j-1}{ }^{(k)}+u_{i, j+1}{ }^{(k)}\right) / 4\)
```


Gauss-Siedel Method and SOR(Successive-Over-Relaxation)

Splitting for Jacobi Method, $M=D-L$ and $K=U$

$$
x^{(k+1)}=(D-L)^{-1}\left(U x^{(k)}+b\right)
$$

While looping over the equations, use the most recent values x_{i}
for $\mathrm{i}=1$ to n
for $\mathrm{j}=1$ to n

$$
u_{i, j}^{(k+1)}=\left(u_{i-1, j}^{(k+1)}+u_{i+1, j}^{(k)}+u_{i, j-1}^{(k+1)}+u_{i, j+1}^{(k)}\right) / 4
$$

Splitting for SOR:

$$
x^{(k+l)}=\omega \underline{x}_{i}^{(k+l)}+(1-\omega) x_{i}^{(k)}
$$

OR

$$
x^{(k+1)}=(D-\omega L)^{-1}(\omega U+(1-\omega) D) x^{(k)}+\omega(D-\omega L)^{-1} b
$$

Stationary and non-stationary methods

-Non-stationary methods:

- The constant are computed by taking inner products of residual or other vectors arising from the iterative method
- Examples:
- Conjugate gradient (CG)
- Minimum Residual (MINRES)
- Generalized Minimal Residual (GMRES)
- BiConjugate Gradient (BiCG)
- Quasi Minimal Residual (QMR)
- Conjugate Gradient Squared (CGS)

Descent Algorithms

Fundamental underlying structure for almost all the descent algorithms:

- Start with an initial point
- Determine according to a fixed rule a direction of movement
- Move in that direction to a relative minimum of the objective function
- At the new point, a new direction is determined and the process is repeated.
- The difference between different algorithms depends upon the rule by which successive directions of movement are selected

The Method of Steepest Descent

- In the method of steepest descent, one starts with an arbitrary point $\mathbf{x}_{(0)}$ and takes a series of steps $\mathbf{x}_{(1)}, \mathbf{x}_{(2)}, \ldots$ until we are satisfied that we are close enough to the solution.
- When taking the step, one chooses the direction in which f decreases most quickly, i.e.
- Definitions: $\quad-\mathrm{f}^{\prime}\left(\mathbf{x}_{(\mathrm{i})}\right)=\mathbf{b}-\mathbf{A} \mathbf{x}_{(\mathrm{i})}$
error vector: $\mathbf{e}_{(\mathrm{i})}=\mathbf{x}_{(\mathrm{i})}-\mathbf{x}$
residual: $\quad \mathbf{r}_{(\mathrm{i})}=\mathbf{b}-\mathbf{A} \mathbf{x}_{(\mathrm{i})}$
- From $\mathbf{A x}=\mathbf{b}$, it follows that

$$
\mathbf{r}_{(\mathrm{i})}=-\mathbf{A} \mathbf{e}_{(\mathrm{i})}=-\mathrm{f}^{\prime}\left(\mathbf{x}_{(\mathrm{i})}\right)
$$

Residual is direction of Steepest Descent

The Method of Steepest Descent

Starting at
$(-2,-2)$ take steps in direction of steepest descent of f

The parabola is the intersection of surfaces

Find the point of intersection of these surfaces that minimizes f

The gradient of the bottomost point is orthogonal to gradient of previous step

The Method of Steepest Descent

The Method of Steepest Descent

- The algorithm

$$
\begin{aligned}
& \mathbf{r}_{(\mathrm{i})}=\mathbf{b}-\mathbf{A} \mathbf{x}_{(\mathrm{i})} \\
& \alpha_{(\mathrm{i})}=\frac{\mathbf{r}_{(\mathrm{i})}^{\mathbf{T}} \mathbf{r}_{(\mathrm{i})}}{\mathbf{r}_{(\mathrm{i})}^{\mathbf{T}} \mathbf{A} \mathbf{r}_{(\mathrm{i})}}
\end{aligned}
$$

$$
\mathbf{x}_{(\mathrm{i}+1)}=\mathbf{x}_{(\mathrm{i})}+\alpha_{(\mathrm{i})} \mathbf{r}_{(\mathrm{i})} \Rightarrow>\mathbf{e}_{(\mathrm{i}+1)}=\mathbf{e}_{(\mathrm{i})}+\alpha_{(\mathrm{i})} \mathbf{r}_{(\mathrm{i})}
$$

- To avoid one matrix-vector multiplication, one uses

$$
\mathbf{r}_{(\mathrm{i}+1)}=\mathbf{r}_{(\mathrm{i})}-\alpha_{(\mathrm{i})} \mathbf{A} \mathbf{r}_{(\mathrm{i})}
$$

The disadvantage of using this recurrence is that the residual sequence is determined without any feedback from the value of $\mathbf{x}_{(\mathrm{i})}$, so that round-off errors may cause $\mathbf{x}_{(i)}$ to converge to some point near \mathbf{x}.

Steepest Descent Problem

-The gradient at the minimum of a line search is orthogonal to the direction of that search \Rightarrow the steepest descent algorithm tends to make right angle turns, taking many steps down a long narrow potential well. Too many steps to get to a simple minimum.

The Method of Conjugate Directions

Basic idea:

- Pick a set of orthogonal search directions $\mathbf{d}_{(0)}, \mathbf{d}_{(1)}, \ldots$, $\mathbf{d}_{(\mathrm{n}-1)}$
- Take exactly one step in each search direction to line up with x
- Solution will be reached in n steps
- Mathematical formulation:

1. For each step we choose a point

$$
\mathbf{x}_{(\mathrm{i}+1)}=\mathbf{x}_{(\mathrm{i})}+\alpha_{(\mathrm{i})} \mathbf{d}_{(\mathrm{i})}
$$

2. To find $\alpha_{(i)}$, we use the fact that $\mathbf{e}_{(i+1)}$ is orthogonal to $\mathbf{d}_{(i)}$

The Method of Conjugate Directions

- To solve the problem of not knowing $\mathbf{e}_{(\mathrm{i})}$, one makes the search directions to be A-orthogonal rather then orthogonal to each other, i.e.:

$$
\mathbf{d}_{(\mathrm{i})}^{\mathrm{T}} \mathrm{~A} \mathbf{d}_{(\mathrm{j})}=0
$$

The Method of Conjugate Directions

- The new requirement is now that $\mathbf{e}_{(i+1)}$ is A-orthogonal to $\mathbf{d}_{(\mathrm{i})}$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \alpha} \mathrm{f}\left(\mathbf{x}_{(\mathrm{i}+1)}\right)=\mathrm{f}^{\prime}\left(\mathbf{x}_{(\mathrm{i}+1)}\right)^{\mathrm{T}} \frac{\mathrm{~d} \mathbf{x}_{(\mathrm{i}+1)}}{\mathrm{d} \alpha}=0 \\
& \mathbf{r}_{(\mathrm{i}+1)}^{\mathrm{T}} \mathbf{d}_{(\mathrm{i})}=0 \\
& \mathbf{d}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{A e}_{(\mathrm{i}+1)}=0 \\
& \mathbf{d}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{A}\left(\mathbf{e}_{(\mathrm{i})}+\alpha_{(\mathrm{i})} \mathbf{d}_{(\mathrm{i})}\right)=0 \\
& \alpha_{(\mathrm{i})}=\frac{\mathbf{d}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{r}_{(\mathrm{i})}}{\mathbf{d}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{A d}_{(\mathrm{i})}}
\end{aligned}
$$

If the search vectors were the residuals, this formula would be identical to the method of steepest descent.

The Method of Conjugate Directions

- Calculation of the A-orthogonal search directions by a conjugate Gram-Schmidt process

1. Take a set of linearly independent vectors $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{n}-1}$
2. Assume that $\mathbf{d}_{(0)}=\mathbf{u}_{0}$
3. For $i>0$, take an \mathbf{u}_{i} and subtracts all the components from it that are not A-orthogonal to the previous search directions

$$
\mathbf{d}_{(\mathrm{i})}=\mathbf{u}_{(\mathrm{i})}+\sum_{\mathrm{j}=0}^{\mathrm{i}-1} \beta_{\mathrm{ij}} \mathbf{d}_{(\mathrm{j})}, \quad \beta_{\mathrm{ij}}=-\frac{\mathbf{u}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{A} \mathbf{d}_{(\mathrm{j})}}{\mathbf{d}_{(\mathrm{j})}^{\mathrm{T}} \mathbf{A} \mathbf{d}_{(\mathrm{j})}}
$$

The Method of Conjugate Directions

- The method of Conjugate Gradients is simply the method of conjugate directions where the search directions are constructed by conjugation of the residuals, i.e. $\mathbf{u}_{\mathrm{i}}=\mathbf{r}_{(\mathrm{i})}$
- This allows us to simplify the calculation of the new search direction because

$$
\beta_{\mathrm{ij}}= \begin{cases}\frac{1}{\alpha_{(\mathrm{i}-1)}} \frac{\mathbf{r}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{r}_{(\mathrm{i})}}{\mathbf{d}_{(\mathrm{i}-1)}^{\mathrm{T}} \mathbf{A d}_{(\mathrm{i}-1)}}=\frac{\mathbf{r}_{(\mathrm{i})}^{\mathrm{T}} \mathbf{r}_{(\mathrm{i})}}{\mathbf{r}_{(\mathrm{i}-1)}^{\mathrm{T}} \mathbf{r}_{(\mathrm{i}-1)}} & \mathrm{i}=\mathrm{j}+1 \\ 0 & i>j+1\end{cases}
$$

- The new search direction is determined as a linear combination of the previous search direction and the new residual

$$
\mathbf{d}_{(\mathrm{i}+1)}=\mathbf{r}_{(\mathrm{i}+1)}+\beta_{\mathrm{i}} \mathbf{d}_{(\mathrm{i})}
$$

The Method of Conjugate Directions

$$
\mathrm{x}_{0}=0, \quad \mathrm{r}_{0}=\mathrm{b}, \quad \mathrm{~d}_{0}=\mathrm{r}_{0}
$$

for $\mathrm{k}=1,2,3, \ldots$

$$
\begin{array}{ll}
\alpha_{\mathrm{k}}=\left(\mathrm{r}_{\mathrm{k}-1}^{\mathrm{T}} \mathrm{r}_{\mathrm{k}-1}\right) /\left(\mathrm{d}_{{ }_{\mathrm{k}-1}}{\left.A d_{\mathrm{k}-1}\right)}\right) & \text { step length } \\
\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}-1}+\alpha_{\mathrm{k}} \mathrm{~d}_{\mathrm{k}-1} & \text { approx solution } \\
\mathrm{r}_{\mathrm{k}}=\mathrm{r}_{\mathrm{k}-1}-\alpha_{\mathrm{k}}{A d_{\mathrm{k}-1}} & \text { residual } \\
\beta_{\mathrm{k}}=\left(\mathrm{r}_{\mathrm{k}}^{\mathrm{T}} \mathrm{r}_{\mathrm{k}}\right) /\left(\mathrm{r}^{\mathrm{T}}{ }_{\mathrm{k}-1} \mathrm{r}_{\mathrm{k}-1}\right) & \text { improvement } \\
\mathrm{d}_{\mathrm{k}}=\mathrm{r}_{\mathrm{k}}+\beta_{\mathrm{k}} \mathrm{~d}_{\mathrm{k}-1} & \text { search direction }
\end{array}
$$

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Krylov subspace

Krylov subspace $\mathbf{K}_{\mathbf{j}}$ is the linear combinations of $b, A b, \ldots, A^{j-1} b$.
Krylov matrix $\mathbf{K j}=\left[\right.$ b Ab A2b ... $\left.\mathrm{A}^{\mathrm{j}} \mathrm{B}^{\mathrm{b}} \mathrm{b}\right]$.
Methods to construct a basis for $\mathbf{K}_{\mathbf{j}}$:
Arnoldi's method and Lanczos method

Approaches to choosing a good $\mathbf{x}_{\mathbf{j}}$ in $\mathbf{K}_{\mathbf{j}}$:

- Ritz-Galerkin approach: $r_{j}=b-A x_{j}$ is orthogonal to $\mathbf{K}_{\mathbf{j}}$ (Conjugate Gradient)
- Minimum Residual approach r_{j} has minimum norm for x_{j} in $\mathbf{K}_{\mathbf{j}}$ (GMRES and MINRES)
- Petrov-Galerkin approach: r_{j} is orthogonal to a different space $\mathbf{K}_{\mathbf{j}}\left(\mathbf{A}^{\mathbf{T}}\right)$ (Biconjugate Gradient)

Arnoldi's Method

The best basis q_{1}, \ldots, q_{j} for the Krylov subspace K_{j} is orthonormal. Each new q_{j} comes from orthogonalizing $t=A q_{j-1}$ to the basis vectors q_{1}, \ldots, q_{j} that are already chosen. The iteration to compute these orthonormal q's is Arnoldi's method.

$$
\begin{aligned}
& q_{1}=b /\|b\| \\
& \text { for } j=1, \ldots, n_{-} 1 \\
& t=A q_{j} \\
& \text { for } i=1, \ldots, j \\
& h_{i j}=q_{i}^{T} \\
& t=t-h_{i j} q_{i} \\
& \text { end; } \\
& h_{j+1, j}=\|t\| \\
& q_{j+1}=t / h_{j+1, j} \\
& \text { end }^{2} \\
& A Q_{n-1}=Q_{n} H_{n, n-1}
\end{aligned}
$$

> \% Normalize b to $\left\|q_{1}\right\|=1$
> \% Start computation of q_{j+1}
> \% one matrix multiplication
> \% t is in the space K_{j+1}
> \% $h_{i j} q_{i}^{T}=$ projection of on q_{i}
> \% Subtract that projection
> \% t is orthogonal to $q_{1} \ldots, q_{j}$
> $\%$ Compute the length of t
> \% Normalize t to $\left\|q_{j+1}\right\|=1$
> $\% q_{1} \ldots q_{n}$ are orthnormal
> $H_{n, n-1}$ is upper Hessenberg matrix

Lanczos Method

Lanczos method is specialized Arnoldi iteration, if A is symmetric (real)

$$
H_{n-1, n-1}=Q_{n-1}^{\top} A Q_{n-1}
$$

$H_{n-1, n-1}$ is tridiagonal and this means that in the orthogonalization process, each new vector has to be orthogonalized with respect to the previous two vectors only, since the inner products vanish.

$$
\begin{aligned}
& B_{0}=0, q_{0}=0, \quad b=\text { arbitrary, } q_{1}=b /\|b\| \\
& \text { for } i=1, \ldots, n_{-} 1 \\
& v=A q_{j} \\
& a_{i}=q_{i}^{T} v \\
& v=v-B_{i-1} q_{i-1}-a_{i} q \\
& B_{i}=\|v\|^{\prime} \\
& q_{j+1}=v / B_{i} \\
& \text { end }
\end{aligned}
$$

Minimum Residual Methods

Problem: If \mathbf{A} is not symmetric positive definite,
$C G$ is not guaranteed to solve $A x=b$.
Solution: Minimum Residual Methods.
Choose $\boldsymbol{x}_{\boldsymbol{j}}$ in the Krylov subspace $\mathbf{K}_{\mathbf{j}}$ so that $\left\|\boldsymbol{b}-\mathbf{A} \boldsymbol{x}_{\boldsymbol{j}}\right\|$ is minimal
The first orthonormal vectors q_{1}, \ldots, q_{j} go in the columns \boldsymbol{Q}_{j} so $\boldsymbol{Q}_{j}{ }^{\top} \mathbf{Q}_{j}=\boldsymbol{I}$
Setting $x_{j}=Q_{j} y$
$\left\|r_{j}\right\|=\left\|b-A x_{j}\right\|=\left\|b-A Q_{j} y\right\|=\left\|b-Q_{j+1} H_{j+1, j} y\right\|$
Using first j columns of Arnoldi's formula $\mathbf{A Q}=\mathbf{Q H}$
First j columns of $\mathbf{Q H}=\left[\begin{array}{lll}q_{1} & \cdots & q_{j+1}\end{array}\right]\left[\begin{array}{ccc}h_{11} & \cdots & h_{1 j} \\ h_{12} & \ddots & \vdots \\ & \ddots & h_{j j} \\ & & h_{j+1, j}\end{array}\right]$ \qquad

Minimum Residual Methods

The problem becomes:
Choose y to minimize

$$
\left\|r_{j}\right\|=\left\|Q_{j+1}^{T} b-H_{j+1, j} y\right\|
$$

This is least squares problem.
Using zeros in \boldsymbol{H} and $\boldsymbol{Q}_{j+1}^{\boldsymbol{t}} \boldsymbol{b}$ to find a fast algorithm that computes \boldsymbol{y}.
GMRES (Generalised Minimal Residual Approach)
\boldsymbol{A} is not symmetric and the upper triangular part of \boldsymbol{H} can be full.
All previously computed vectors have to be stored.
MINRES:(Minimal Residual Approach)
\boldsymbol{A} is symmetric (likely indefinite) and \boldsymbol{H} is tridiagonal.
Avoids storageof all basis vectors for the Krylov subspace
Aim: to clear out the non-zero diagonal below the main diagonal of \boldsymbol{H}.
This is done by Givens rotations

GMRES

Algorithm: GMRES
$q_{1}=b /\|b\|$
for $\boldsymbol{j}=1,2,3 . .$.
step j of Arnoldi iteration
Find y to minimize $\left\|r_{j}\right\|=\left\|Q_{j+1}^{T} b-H_{j+1, j} \boldsymbol{l}\right\|$
$x_{j}=Q_{j} y$

Full-GMRES :

The upper triangle in H can be full and step j becomes expensive and possibly it is inaccurate as j increases.

GMRES(m):

Restarts the GMRES algorithm every m steps However tricky to choose m.

Petrov-Galerkin approach

- r_{j} is orthogonal to a different space $\mathbf{K}_{\mathbf{j}}\left(\mathbf{A}^{\mathbf{T}}\right)$
- BiCG (Bi-Conjugate Gradient)
- QMR (Quasi Minimum Residual)
- CGS (Conjugate Gradient Squared)

Lanczos Bi-Orthogonalization Procedure

-Extension of the symmetric Lanczos algorithm
-Builds a pair of bi-orthogonal bases for the two subspaces $\mathrm{K}_{\mathrm{m}}\left(\mathrm{A}, \mathrm{v}_{1}\right)$ and $\mathrm{K}_{\mathrm{m}}\left(\mathrm{A}^{\top}, \mathrm{w}_{1}\right)$

Choose two vectors v_{1}, w_{1} such that $\left(v_{1}, w_{1}\right)=1$
Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
For $j=1,2, \ldots, m$ Do:

$$
\begin{aligned}
& \alpha_{j}=\left(A v_{j}, w_{j}\right) \\
& \hat{v}_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1} \\
& \hat{w}_{j+1}=A^{T} w_{j}-\alpha_{j} w_{j}-\delta_{j} w_{j-1} \\
& \delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2} . \text { If } \delta_{j+1}=0 \text { Stop } \\
& \beta_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1} \\
& w_{j+1}=\hat{w}_{j+1} / \beta_{j+1} \\
& v_{j+1}=\hat{v}_{j+1} / \delta_{j+1}
\end{aligned}
$$

EndDo

Bi-Conjugate Gradient (BiCG)

Compute $r_{0}:=b-A x_{0}$. Choose r_{0}^{*} such that $\left(r_{0}, r_{0}^{*}\right) \neq 0$.
Set, $p_{0}:=r_{0}, p_{0}^{*}:=r_{0}^{*}$
For $j=0,1, \ldots$, until convergence Do:,

$$
\begin{aligned}
& \alpha_{j}:=\left(r_{j}, r_{j}^{*}\right) /\left(A p_{j}, p_{j}^{*}\right) \\
& x_{j+1}:=x_{j}+\alpha_{j} p_{j} \\
& r_{j+1}:=r_{j}-\alpha_{j} A p_{j} \\
& r_{j+1}^{*}:=r_{j}^{*}-\alpha_{j} A^{T} p_{j}^{*} \\
& \beta_{j}:=\left(r_{j+1}, r_{j+1}^{*}\right) /\left(r_{j}, r_{j}^{*}\right) \\
& p_{j+1}:=r_{j+1}+\beta_{j} p_{j} \\
& p_{j+1}^{*}:=r_{j+1}^{*}+\beta_{j} p_{j}^{*}
\end{aligned}
$$

EndDo

Quasi Minimum Residual (QMR)

-QMR uses unsymmetric Lanczos algorithm to generate a basis for the Krylov subspaces
-The lookahead technique avoids breakdowns during Lanczos process and makes QMR robust.

$$
\begin{aligned}
& \text { Compute } r_{0}=b-A x_{0} \text { and } \gamma_{0}:=\left\|r_{0}\right\|_{2}, w_{1}:=v_{1}:=r_{0} / \gamma_{1} \\
& \text { For } m=1,2, \ldots \text {, until convergence Do: } \\
& \text { Compute } \alpha_{m}, \delta_{m+1} \text { and } v_{m+1}, w_{m+1} \text { as in Lanczos Algor. } \\
& \text { Update the QR factorization of } \bar{T}_{m}, \text { i.e., } \\
& \qquad \begin{array}{l}
\text { Apply } \Omega_{i}, i=m-2, m-1 \text { to the } m \text {-th column of } \bar{T}_{m} \\
\quad \text { Compute the rotation coefficients } c_{m}, s_{m} \\
\text { Apply rotation } \Omega_{m}, \text { to } T_{m} \text { and } \bar{g}_{m i}, \text { i.e., compute: } \\
\quad \gamma_{m+1}:=-s_{m} \gamma_{m} ; \gamma_{m}:=c_{m} \gamma_{m} ; \text { and } \alpha_{m}:=c_{m} \alpha_{m}+s_{m} \delta_{m+1} \\
p_{m}=\left(v_{m}-\varepsilon_{i=m-2}^{m-1} t_{m} p_{i}\right) / t_{m m} \\
x_{m}=x_{m-1}+\gamma_{m} p_{m} \\
\text { If }\left|\gamma_{m+1}\right| \text { is small enough Stop }
\end{array}
\end{aligned}
$$

EndDo

Conjugate Gradient Squared (CGS)

Compute $r_{0}:=b-A x_{0} ; r_{0}^{*}$ arbitrary.
Set $p_{0}:=u_{0}:=r_{0}$.
For $j=0,1,2 \ldots$, until convergence Do:

$$
\begin{aligned}
& \alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right) \\
& q_{j}=u_{j}-\alpha_{j} A p_{j} \\
& x_{j+1}=x_{j}+\alpha_{j}\left(u_{j}+q_{j}\right) \\
& r_{j+1}=r_{j}-\alpha_{j} A\left(u_{j}+q_{j}\right) \\
& \beta_{j}=\left(r_{j+1}, r_{0}^{*}\right) /\left(r_{j}, r_{0}^{*}\right) \\
& u_{j+1}=r_{j+1}+\beta_{j} q_{j} \\
& p_{j+1}=u_{j+1}+\beta_{j}\left(q_{j}+\beta_{j} p_{j}\right)
\end{aligned}
$$

EndDo

Summary

-Stationary Iterative Solvers :

- Jacobi, Gauss-Seidel, SOR
-Non-Stationary Solvers:
- Krylov subspace methods
- Conjugate Gradient
- Symmetric postive definite systems
- GMRES and MINRES
- Non-symmetric matrices, but expensive
- Bi-CG
- Non-symmetric, two matrix-vector product
- QMR
- Non-symmetric, avoids irregular convergence of BiCG
- CGS
- Non-symmetric, faster than BICG, does not require transpose

References

- An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Jonathan Richard Shewchuk August 4, 1994
- Closer to the solution: Iterative linear solvers - Gene h. Golub , Henk A. Van der Vorst
-Krylov subspaces and Conjugate Gradient- Gilbert Strang

Thank You !

