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1 Introduction

Our longstanding aim is to study the three-body scattering problem. As a first step to this
problem we consider a so called S-wave three body Faddeev equation and concentrate our
attention on the basis, which will be used for expanding the solution [1]. We construct this basis
as adiabatic harmonics when the hyperradius is considered as the adiabatic parameter. Once the
basis is constructed, the standard projection procedure leads to the effective equations for the
expansion coefficients. The parameters of these effective equations depend on the properties of
the basis functions, particularly on the geometrical characteristics of the basis functions which
are represented by the geometrical connection matrix.

Here we give a sketch of a formalism and present the behavior of eigenvalues λk, eigenfunc-
tions φk, and geometrical connections Aij = 〈φi, ∂ρ φj〉 of the operator

h(ρ) = −ρ−2∂ 2
θ + V (ρ cos θ).

This operator is generated by the simplest s-wave Faddeev differential equation (FDE) formu-
lation of the three-body scattering problem [1].

2 Faddeev Equations in {ρ, θ} Coordinates

The Faddeev s-wave equation in polar coordinates has the form

(
−∂2

ρ −
1

4ρ2

)
U(ρ, θ) +

(
− 1

ρ2
∂ 2

θ + V (ρ cos θ)

)
U(ρ, θ)− EU(ρ, θ) =

−V (ρ cos θ)

√
3

4

∫ θ+(θ)

θ−(θ)

dθ′ U(ρ, θ′),

where θ+(θ) = π/2 − |π/6 − θ| and θ−(θ) = |π/3 − θ|. The boundary conditions should be
imposed for the scattering solution. The first set of these conditions determines the regularity
of the solution

U(0, θ) = U(ρ, 0) = U(ρ, π/2) = 0. (2.1)
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The second set of conditions is the asymptotics as ρ →∞
U(ρ, θ) ∼ ϕ(x)ρ1/2 sin(qy)/q + a(q)ϕ(x)ρ1/2 exp(iqy) + A(θ, E) exp(i

√
Eρ), (2.2)

where x = ρ cos θ. The momentum of the projectile q is related to the energy E and the binding
energy of the two body target ε by the expression

q2 = E − ε.

The bound-state wave function of the two body target system ϕ(x) obeys the equation

{−∂ 2
x + V (x)}ϕ(x) = ε ϕ(x).

It is assumed that the discrete spectrum of the Hamiltonian −∂2
x+V (x) consists of one negative

eigenvalue ε at most.

3 Expansion basis

We need a basis to expand the solution of the scattering problem for the Faddeev equation. As
this basis we choose the eigenfunctions set of the operator h(ρ)

h(ρ)φk(θ|ρ) =
(−ρ−2∂ 2

θ + V (ρ cos θ)
)
φk(θ|ρ) = λk(ρ)φk(θ|ρ).

Here ρ is an external parameter for the operator h(ρ). That means the eigenfunctions and the
eigenvalues of h(ρ) inherit parametrical dependence on ρ. The main spectral properties of the
operator h(ρ) as ρ → ∞ and of the two body Hamiltonian −∂2

x + V (x) can be formulated as
follows

λ = lim
ρ→∞

λ0(ρ) = ε,

φ0(θ| ρ) =
√

ρϕ(ρ cos θ)(1 + O(ρ−µ))

with some µ > 0. For excited states φk(θ|ρ), k ≥ 1 as ρ →∞ the asymptotic behavior is given
by the formulas

λk(ρ) ∼
(

2k

ρ

)2

,

φk(θ| ρ) ∼ 2√
π

sin(2kθ).

4 Perturbation theory

If the parameter ρ is large, the support of the potential V (ρ cos θ) is small on the interval
[0, π/2]. In this case the estimates for the eigenvalues and the eigenfunctions of the operator
h(ρ) can be obtained by the perturbation theory considering the potential V (ρ cos θ) as a small
perturbation

λk ∼ λ
(0)
k + λ

(1)
k , (4.3)

φk(θ|ρ) ∼ φ
(0)
k (θ| ρ) + φ

(1)
k (θ| ρ). (4.4)
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Here the leading terms λ
(0)
k and φ

(0)
k for k ≥ 1 are given by

λ
(0)
k = (2k)2/ρ2, (4.5)

φ
(0)
k (θ| ρ) =

2√
π

sin(2kθ). (4.6)

The first order correction terms λ
(1)
k and φ

(1)
k are defined in terms of the matrix elements of the

potential V (ρ cos θ)

Vnk(ρ) = 〈φ(0)
n |V |φ(0)

k 〉 =

∫ π/2

0

dθ φ(0)
n (θ| ρ)V (ρ cos θ)φ

(0)
k (θ| ρ). (4.7)

As the model situation, we estimate the behavior of the matrix elements Vnk(ρ) for large values
of ρ for the special case of the function V (x) taken in the form of the Yukawa potential

V (x) = C
exp(−µx)

x
,

where C and µ are some parameters.
As ρ → ∞ we approximately estimate the value of the integral (4.7). The potential V (x)

is nonzero in the interval [0, R], where R is the large parameter. We may consider those
values of θ which are obeyed the inequality ρ cos θ < R, or cos θ < R/ρ, and set the potential
V (x) = 0 for the others values. In this case the ratio R/ρ can be considered as the small
parameter for the perturbation theory. After this suggestion we consider the integral on the
interval θ ∈ [arccos(R/ρ), π/2] ' [π/2− R/ρ, π/2]. We get the following estimation for Vnk(ρ)
by integrating by parts

Vnk(ρ) ∼ (−1)n+k 16nkC

π

[1− exp(−µR)(1 + µR)]

µ2

1

ρ3
.

The matrix element Vnk depends on the parameter ρ →∞ as

Vnk(ρ) ∼ ρ−3.

The first order correction term λ
(1)
k is

λ
(1)
k = Vkk ∼ 16k2C

π

[1− exp(−µR)(1 + µR)]

µ2

1

ρ3
∼ ρ− 3.

The second order correction term has the form

λ
(2)
k =

∑

n6=k

|Vnk| 2
λ

(0)
k − λ

(0)
n

,

which leads to the dependence
λ

(2)
k ∼ ρ− 4.

The first correction term for the eigenfunction is given by

φ
(1)
k =

∑

n6=k

Vnk

λ
(0)
k − λ

(0)
n

φ(0)
n ∼ ρ−1.
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Previously, we introduced the geometrical connections Aij as 〈φi, ∂ρ φj〉. From the equation

(−ρ−2 ∂ 2
θ + V (ρ cos θ)

)
φk(θ|ρ) = λk(ρ)φk(θ|ρ)

it is easily seen that another form for Aij in terms of the potential reads

Aij =
〈φi| ∂ ρ(ρ

2V (ρ cos θ))|φj〉
ρ 2(λj − λi)

.

Using the above asymptotics for eigenfunctions and eigenvalues as ρ → ∞ we arrive to the
asymptotic behavior of the geometrical connection Aij

Aij ∼ 1

ρ 2
, i, j 6= 0, (4.8)

Aij ∼ 1

ρ 5/2
, i = 0 or j = 0. (4.9)

5 Solution expansion

The operator h(ρ) is Hermitian on [0, π/2] interval with zero boundary conditions and its
eigenfunction set {φk(θ| ρ)}∞0 is complete. This set can be used to expand the solution of the
Faddeev equation as

U(ρ, θ) = φ0(θ| ρ)F0(ρ) +
∑

k≥1

φk(θ| ρ)Fk(ρ).

The asymptotic behavior of the coefficients Fk(ρ) as ρ → ∞ follows from (2.2) and has the
form

F0(ρ) ∼ sin(qρ)/q + a0(q) exp(iqρ) (5.10)

for the elastic scattering channel, where q2 = E − λ, λ = limρ→∞ λ0(ρ). For break-up channels
the correct asymptotics for k ≥ 1 case has the form

Fk(ρ) ∼ ak(E) exp(i
√

Eρ), k ≥ 1. (5.11)

The comparison of (2.2) and (5.10) and (5.11) leads to the identification

a(q) = a0(q),

A(θ, E) =
∑

k≥1

ak(E)φk(θ|∞),

where
φk(θ|∞) = lim

ρ→∞
φk(θ| ρ).

Introducing this expansion in the Faddev equation and projecting on basis functions lead us to
the following set of equations for the coefficients Fk(ρ), k = 0, 1, ...

(
−∂ 2

ρ −
1

4ρ2
+ λk(ρ)− E

)
Fk(ρ) =

∞∑
i=0

[
2Aki

∂Fi(ρ)

∂ρ
+ Bki(ρ)Fi(ρ)−Wki(ρ)Fi(ρ)

]
. (5.12)
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Here the nonadiabatical matrix elements Aki(ρ), Bki(ρ) and potential coupling matrix Wki(ρ)
are given by integrals

Aki(ρ) = 〈φk| ∂ρ φi〉 =

∫ π/2

0

dθ φ∗k(θ| ρ)
∂φi(θ| ρ)

∂ρ
,

Bki(ρ) = 〈φk| ∂ 2
ρ φi〉 =

∫ π/2

0

dθ φ∗k(θ| ρ)
∂2φi(θ| ρ)

∂ρ2
,

Wki(ρ) =

√
3

4

∫ π/2

0

dθ φ∗k(θ| ρ)V (ρ cos θ)

∫ θ+(θ)

θ−(θ)

dθ′ φi(θ
′| ρ).

Let us study the asymptotic behavior of functions Fk(ρ) resulted from the equation (5.12). Let
us consider these equations in case ρ →∞. For further investigation it is useful to change the
form of the equation (5.12) to make it selfadjoint. That means excluding the term with the
first derivative of Fi.

Let us transform the equation (5.12) into the matrix form. Here we introduce few matrices.
F (ρ) is infinite one row matrix which consists of the coefficients Fk(ρ). Matrices A,B, W are
infinite matrices related to the coefficients Aki, Bki, Wki respectively. Λ is the infinite diagonal
matrix, with diagonal elements λk(ρ). The equation (5.12) assumes the form

(
−∂ 2

ρ −
1

4ρ 2
+ Λ(ρ)− E

)
F (ρ) = 2A∂ρF (ρ) + (B −W )F (ρ), (5.13)

or
F ′′(ρ) + PF ′(ρ) + QF (ρ) = 0, (5.14)

were P = 2A and Q = (1/4ρ− 2 − Λ(ρ) + E + B −W ) and ”prime” means the derivative over
ρ.

We introduce the matrix transformation F = UG and consider elements of G as new un-
known quantities and choose the transformation matrix U in such a way the resulting equation
for G will contain no first derivative. After substitution F = UG into (5.14) we get

UG′′ + (2U ′ + PU) G′ + (U ′′ + PU ′ + QU) G = 0. (5.15)

We set 2U ′ + PU = 0 which leads to the matrix equation

U ′ = −1

2
PU = −AU. (5.16)

The solution to this equation can be given by the integral equation of the form

U(ρ) = I +

∫ ∞

ρ

AUdρ (5.17)

where I is the unite matrix. The integral equation is defined correctly if the integral in the right
hand side converges. This will be guaranteed if the matrix A behaves as A(ρ) ∼ 1/ρ1+ε, ε > 0
what is fulfilled in view of (4.8, 4.9). Hence, the asymptotics is valid

U → I
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as ρ →∞.
By using (5.16) in the equation (5.15) we get the form without first derivative F ′

UG′′ +
(
−1

2
P ′ − 1

4
P 2 + Q

)
UG = 0.

After substitution of the expressions for P and Q we obtain the final form

G′′ + U−1

(
−A′(ρ)− A2(ρ) +

1

4ρ2
− Λ(ρ) + E + B −W

)
UG = 0. (5.18)

As ρ →∞ we can use the asymptotics U(ρ) ∼ I + O(ρ−1) and get the following asymptotical
form of (5.18)

(
−∂ 2

ρ −
1

4ρ 2
I + Λ(ρ)− E

)
G =

(−A′(ρ)− A2(ρ) + B(ρ)−W (ρ)
)
G. (5.19)

From this equation we obtain asymptotics for the elements of G as ρ → ∞. Indeed, the right
hand side terms vanish for large ρ faster than ρ−2. Hence this terms can be neglected. The
coupling terms vanish and we get uncoupled equations of the form

(
−∂ 2

ρ −
1

4ρ 2
+ λas

k (ρ)− E

)
Gk(ρ) = 0. (5.20)

Here λas
0 (ρ) = ε and λas

k (ρ) = (2k)2/ρ 2 for k ≥ 1. The solutions of these equations with the
appropriate asymptotics can be expressed in terms of the Bessel (Y, J) functions and the Hankel
(H(1)) functions of the first kind as following

G0(ρ) ∼
√

πqρ

2

Y0(qρ) + J0(qρ)√
2q

+ a0(q)

√
πqρ

2
H

(1)
0 (qρ)eiπ/4 (5.21)

for the elastic scattering channel, and

Gk(ρ) ∼ ak(E)

√
π
√

Eρ

2
H

(1)
2k (

√
Eρ)ei(π/4+kπ) (5.22)

for break-up channels. As the result the solution of scattering problem consists in solving
equations (5.12) with asymptotics (5.21) and (5.22) as boundary conditions as ρ →∞.

6 Malfliet-Tjon potential

For numerical calculation we choose a potential, which describes the modeling nucleon-nucleon
interaction acting in the triplet state with the spin 3/2. The potential has the form of the
Yukawa terms superposition

V (x) = V1
exp(−µ1x)

x
+ V2

exp(−µ2x)

x
(6.23)

with parameters listed in the table:
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Coefficient Value
V1 −626, 885MeV
V2 1438, 72MeV
µ1 1, 55 Fm−1

µ2 3, 11 Fm−1

0 1 2 3

-2

-1

0

1

2

3

V
(x

), 
Fm

^(
-2

)

x, Fm

 V(x)

Figure 1. The Malfliet-Tjon potential

For calculations we have to choose the appropriate unit system.
The Schrödinger equation

(
−~

2

m
∂2

x + V (x)− E

)
ψ(x) = 0.

for the neutron-proton system can be transformed into the form

(
−∂2

x + Ṽ (x)− Ẽ
)

ψ(x) = 0

where

Ṽ (x) =
~2

m
V (x)

Ẽ =
~2

m
E.

Here ~2
m

= 41.47fm2MeV.
As we set x = ρ cos θ in polar coordinates and ρ is the parameter, we can consider the

dynamics of the potential V (ρ cos θ) on the interval [0, π/2] with variation of ρ.
As ρ →∞ the support of V (ρ cos θ) becomes smaller and localizes near π/2.
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Figure 2. The dynamics of the Malfliet-Tjon potential, ρ = 1
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Figure 3. The dynamics of the Malfliet-Tjon potential, ρ = 10
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Figure 4. The dynamics of the Malfliet-Tjon potential, ρ = 100
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7 Numerical calculations

We use the simplest discretisation of the equation, namely, the finite-difference approach, al-
though more sophisticated approaches may be applied in the same manner.

We introduce two dimensional uniformly spaced polar grid with nodes ρi, θl, 1 ≤ i ≤ Nρ, 1 ≤
l ≤ Nθ. The uniformity means that ρi+1− ρi = τ and θl+1− θl = h and τ and h do not depend
on numbers i and l.

The discretised equation takes the form

−φk(θ − h) + 2φk(θ)− φk(θ + h)

ρ 2h 2
+ V (ρ cos θ)φk(θ) = λkφk(θ).

where k is the number of eigenvalue and eigenfunction. We use zero boundary conditions

φk(0) = φk(π/2) = 0.

For numerical computations we use the Intelr Math Kernel Library 10.0.1 for Unix. It pro-
vides us with functions and procedures for the matrix calculations and different linear algebra
problems such as eigenfunctions and eigenvalues. This library is highly efficient and optimized.

Particularly we use procedure ’DSTEVX’ which computes selected eigenvalues and, option-
ally, eigenvectors of a real symmetric tridiagonal matrix. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices. We choose second option
and compute both eigenvalues and eigenfunctions with numbers from 0 to 20.

8 Eigenvalues

We estimate the asymptotic behavior and few correction terms in the formalism of the pertur-
bation theory. The asymptotic behavior for eigenvalues λk, k ≥ 1 is

λk(ρ) ∼
(

2k

ρ

)2

and the first order correction term depends on parameter ρ as λ
(1)
k ∼ ρ−3.

We obtain the next results for eigenvalues. The first eigenvalue λ0’s behavior has the
form shown in the Fig. 5. As ρ → ∞ the λ0 becomes the constant value −0, 0538 fm−2 or
−2, 2307 MeV.

Few other eigenvalues λk, k ≥ 1 are presented in the Fig. 6.
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Figure 5. Eigenvalue λ0
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Figure 6. Eigenvalues λ0 − λ5

The numerically calculated behavior of eigenvalues is very close to predicted asymptotics.
We consider the deviation between calculated eigenvalues and asymptotics and obtain the
”asymptotic” region in ρ for which λk ∼ λas

k .

• ρ ∼ 10 – The deviation is significant and varies from 10% up to 90%.

• ρ ∼ 100 – The deviation is about 5− 7%

• ρ = 700 – The deviation is less than 1%

• ρ ∼ 1000 – The deviation is about 0, 7%

We conclude that the eigenvalues reach the asymptotic behavior as ρ ≥ 1000. In the Fig. 7
both numerically calculated eigenvalue λ10 and its asymptotic are presented.
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Figure 7. Eigenvalue λ10 and its asymptotic behavior

9 Eigenfunctions

We start with the special eigenfunction φ0 which behavior is very different from the other
eigenfunctions.

With growth of ρ the support (the interval where the eigenfunction is nonzero) of φ0 de-
creases, while the peak value increases to infinity. As ρ → ∞ the eigenfunction φ0 transforms
into δ-function. This fact leads to a number of computational problems. We have to set step h
of the discretisation smaller with grows of ρ in order to keep the accuracy.

The step-by-step transformation of φ0 into δ-function is presented in the Fig. 8
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Figure 8. The dynamics of the eigenfunction φ0
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or more detailed
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Figure 9. The dynamics of the eigenfunction φ0 near point π/2

Let us consider the asymptotic behavior of φk, k ≥ 1. The dynamics of eigenfunctions with
growth of the parameter ρ is presented in next figures.
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The dynamics of φ1(θ) is shown step-by-step in the Fig. 10. As ρ → ∞ the eigenfunction
turns into the asymptotic sin-function.
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Figure 10. The dynamics of eigenfunction φ1(θ)

On the each step we check the orthogonality of the basis. Few matrix elements 〈φk|φn〉 are
presented in Tabs. 1, 2. Similar results were obtained for all eigenfunctions.

For ρ = 100:

Table 1. The orthogonality of basis functions, ρ = 100

φ0 φ1 φ2 φ3

φ0 1, 000000000000001 −0, 000000000000000 0, 000000000000000 −0, 000000000000000
φ1 −0, 000000000000000 1, 000000000000007 0, 000000000000002 −0, 000000000000001
φ2 0, 000000000000000 0, 000000000000002 1, 000000000000002 0, 000000000000000
φ3 −0, 000000000000000 −0, 000000000000001 0, 000000000000000 1, 000000000000004
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For ρ = 1000:

Table 2. The orthogonality of basis functions, ρ = 1000

φ0 φ1 φ2 φ3

φ0 1, 000000000000000 −0, 000000000000000 0, 000000000000000 0, 000000000000000
φ1 −0, 000000000000000 0, 999999999999997 0, 000000000000001 −0, 000000000000000
φ2 0, 000000000000000 0, 000000000000001 0, 999999999999996 −0, 000000000000002
φ3 0, 000000000000000 −0, 000000000000000 −0, 000000000000002 1.000000000000002

As ρ → ∞ calculated eigenfunctions have similar behavior to sin(2kθ), but with the small
addition in the area near point π/2. To estimate this addition we calculate the maximum
deviation for different values of ρ by the formula

max
θ
|φk,ρ(θ)− sin(2kθ)|.

The significant deviations are observed only near point π/2. They decrease as ρ →∞. The
absolute deviations are shown on figures 11, 12.

• ρ = 500
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Figure 11. The absolute deviation in case φ20, ρ = 500

• ρ = 1000
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Figure 12. The absolute deviation in case φ20, ρ = 1000

10 Geometrical connections

We introduce the off-diagonal matrix of the geometrical connection A with elements

Aki(ρ) = 〈φk|φ′i〉 =

∫ π/2

0

dθ φ∗k(θ| ρ)
∂φi(θ| ρ)

∂ρ
.

These elements are presented in the equation

(
−∂2

ρ −
1

4ρ2
+ Λ(ρ)− E

)
G =

(−A′(ρ)− A2(ρ) + B(ρ)−W (ρ)
)
G (10.24)

and determine the behavior of the right hand side as ρ → ∞. The potential terms in the left
hand side of the equation decreases as ρ−2. If the right hand side decreases faster, it can be
neglected. The solution in this case is known and can be used as the boundary condition for
full equation.

The potential formula for elements Aki is

Aki =
〈φk| ∂ ρ(ρ

2V (ρ cos θ))|φi〉
ρ 2(λi − λk)

.

The diagonal element Akk is equal to 0 and Aki = −Aik. We separate the behavior of Ak0 and
Aki because of its different dependence on the parameter ρ.

• Geometrical connection Aki with k = 0 or i = 0. It differs from the other elements,
because λ0 = ε = const as ρ →∞. From analytical calculations we estimate its behavior
as

Aki ∼ ρ−5/2.

Results from numerical calculation are shown on the Fig. 13.
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Figure 13. Geometrical connections A0k, k = 1, . . . , 10
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Figure 14. Geometrical connections A0k in double logarithmic scale

We plot this graphs in the double logarithmic scale (Fig. 14). The intercept coefficient in
asymptotic linear area is slightly smaller than −2, 5.

• Geometrical connection Aki with k, i 6= 0. We estimated its behavior as

Aki ∼ ρ−2.

Results from numerical calculation are shown on the figures 15, 16.
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Figure 15. Geometrical connections A1k, k = 2, . . . , 10
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Figure 16. Geometrical connections A4k, k = 5, . . . , 10

We plot this graphs in the double logarithm scale (Fig. 17). The intercept coefficient
in asymptotic linear area is slightly smaller than −2.
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Figure 17. Geometrical connections A1k in double logarithmic scale

11 Conclusions

We choose basis functions φk and study their properties, particularly eigenvalues λk and geomet-
rical connections Aij. We estimate asymptotics and compare them with numerically calculated
values. Results are in good agreement with each other.
The behavior of geometrical connections Aij is regular in case of the Malfliet-Tjon potential.
Obtained results lead us to the conclusion that the right hand side of the equation (5.19) tends
to 0 faster than the left hand side as ρ →∞ and can be neglected in asymptotic region.
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