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Band diagonal with bandwidth M

Block tridiagonal



Types of sparse matrixes

Methods of solving sparse linear systems.

Doubly bordered block diagonal

Other…



Sherman-Morrison Formula

The general idea of Sherman-Morrison 
formula is replacement of the original 
matrix in the sum of matrix A and the 
product of vectors u and v. 
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Sherman-Morrison Formula
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Where
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to find inverse matrix

Given         and the vectors     and     , we need only to perform matrix 
multiplication and a vector dot product,



Sherman-Morrison Formula

The Sherman-Morrison formula can be directly applied to a class of 
sparse problems. If you already have a fast way of calculating the 
inverse of     , then this method allows you to build up a method 
for more complicated matrices, adding for example a row or a 
column at a time. Notice that you can apply the Sherman-Morrison 
formula more than once successively, using at each stage the most 
recent update of        . Of course, if you have to modify every row, 
then you are back to an      method.
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Sherman-Morrison Formula
For some other sparse problems, the Sherman-Morrison formula 
cannot be directly applied for the simple reason that storage of the 
whole inverse matrix        is not feasible. If you want to add only a 
single correction of the form              , and solve the linear system

Then you proceed as follows. Using the fast method that is 
presumed available for the matrix  , solve the two auxiliary 
problems
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Sherman-Morrison Formula

In terms of these solutions,
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Sherman-Morrison Formula
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Example

Cyclic tridiagonal system:



Sherman-Morrison Formula

This is a tridiagonal system, except for the matrix elements    and    
in the corners.

We use the Sherman-Morrison formula, treating the system as a 
tridiagonal plus a correction. 
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Sherman-Morrison Formula

Then the matrix  is the tridiagonal part of initial matrix, 
with two terms modified:
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We solve equations  

With the standard tridiagonal algorithm, for example 
sweep method.



Sherman-Morrison Formula

Methods of solving sparse linear systems.

And get the solution by the formula



Sherman-Morrison Formula
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Acceleration with respect to Gauss method



Woodbury Formula

If you want to add more than a single correction term, 
then you cannot use Sharman-Morrison formula 
repeatedly, since without storing a new       you are not 
able to solve the auxiliary problems efficiently after the 
first step.  Instead you need the Woodbury Formula
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Here   is, as usual, an           matrix, while       and    
are  matrices with             and usually             .



Woodbury Formula
The relation between the Woodbury formula and 
successive applications of the Sherman-Morrison 
formula is now clarified by noting that, if     is the matrix 
formed by columns with    vectors                   , and    is 
the matrix formed by columns with    vectors              
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Woodbury Formula
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Then two ways of expressing the same correction to  
are possible

Note that the subscripts on u and v do not denote 
components, but rather distinguish the different column vectors.



Woodbury Formula
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Last equation reveals that, if you have      in storage, then you can 
either make the     corrections at once by using Woodbury formula, 
inverting a         matrix, or else make them by applying Sherman-
Morrison formula      successive times.

If you don't have storage for        , then you must use Woodbury 
formula in the following way: To solve the linear equation



Woodbury Formula
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first solve the auxiliary problems

and construct the matrix by columns of the obtained solutions



Woodbury Formula
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Next, do the         matrix inversion

Finally, solve one more auxiliary problem

In terms of these quantities, the solution is given by the formula



Indexed Storage of Sparse Matrices

The first N locations of sa store diagonal matrix elements of A, in 
their order. (Note that diagonal elements are stored even if they 
are zeros; this is at most a slight storage inefficiency, since diagonal 
elements are nonzero in most realistic applications)

Each of the first N locations of ija stores the index of the array sa 
that contains the first off-diagonal element of the corresponding 
row of the matrix. (If there are no off-diagonal elements for that 
row, it is one greater than the index in sa of the most recently 
stored element of a previous row)
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Indexed Storage of Sparse Matrices

Location 0 of ija is always equal to N +1. (It can be read (или used) 
to determine N)

Location N of ija is one greater than the index in sa of the last off-
diagonal element of the last row. ( It ca be read to determine the 
number of nonzero elements in the matrix, or the number of 
elements in the arrays sa and ija.) Location N of sa is not used and 
can be set arbitrarily.

Entries in sa at locations >= N+1 contain off-diagonal elements of 
A ordered by rows and, within each row, ordered by columns.

Entries in ija at locations >= N+1 contain the column number (или
index) of the corresponding element in sa.
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Indexed Storage of Sparse Matrices
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Index k 0 1 2 3 4 5 6 7 8 9 10

ija[k] 6 7 7 9 10 11 2 1 3 4 2

sa[k] 3 4 5 0 5 x 1 7 9 2 6



Thank you
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