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Technology of EHIS (stamping) applied to production of automotive parts  
 
 

The problem described in this report originated from the joint project of General Motors, USA 
and the Laboratory of Pulsed Power Energy, and the Laboratory of Applied Mathematics and 
Mechanics, Saint Petersburg State Polytechnical University, Russia. The project is in progress. 
 
 
Motivation  
 

An application of the discharge in water with the aim of metal forming was firstly described in 
40s of the 20th century and then examined experimentally and theoretically since the end of 50s in the 
Soviet Union and the USA. Since that time this technology has been developed mostly in our country for 
the purpose to produce small series of items. Nowadays, GM is interested in industrial application of 
Electro Hydraulic Impulse Stamping (EHIS) to put out small automotive parts. 
 

It is planned to construct a laboratory bench for stamping of small fragments of the automotive 
parts. An experimental research of the EHIS process is conducted on this bench. A numerical 
methodology for complex simulation of such process is developed and validated on the basis of 
experimental data. 
 

The analysis of the previous publications and the available experience give evidence that the 
electric discharge in water can be effectively used for stamping of the flat-pattern parts. There is a 
great number of publications with description of the specific technological processes.  

An additional investigation is needed including research of the physics of EHIS process, 
measuring parameters that determine the deformation process (energy, pressure field, material 
deformation rate, etc.), development of a theoretical model that can interpret the obtained 
experimental results and relate them to the power supply parameters. 
 

The project is aimed at: 
 

1. Development and validation of numerical methodology, which is capable to simulate the 
EHIS process. The developed mathematical model of the process should describe the plastic 
deformation of the plate stock under the action of expanding water. For simulation of the 
EHIS process it is planned to implement LS-DYNA code. 

 
2. Testing the EHIS process with model hydro-pulse laboratory benches. It is planned to 

perform experimental investigations of the process of pressure field forming at the electrical 
discharge. Moreover, it is necessary to find similarity conditions of EHIS processes for 
possible scaling of the process. 

 
3. Development of an EHIS technological model for a given object (part). Verification of the 

numerical model and similarity conditions at realization of full scale technological process.  
 
 
Description of the technological process  
 



A conventional scheme of the spark discharge experiment in the water is shown in Fig. 1. 
After closing switch S, the voltage from the charged capacitor C is applied to electrodes 2 located in 
the discharge chamber 1. The chamber is filled with water. The discharge causes development of a 
gas bubble and water expansion. The time of discharge development is determined by the 
characteristics of the discharge gap. Usually, it is from  to seconds. 510− 410−

 

 
Fig. 1. Experimental plant 

 
Photography of the chamber in which the examination of discharges in water with deformation of flat 
metal specimens was held is shown in Fig. 2. 
 

 
Fig. 2. Work chamber 

 
The chamber is provided with two sight holes of diameter 130 mm. Two electrodes are inserted 

into the same volume through insulators. Electrodes form the discharge gap in which the energy 
necessary for deformation releases. A pressure from 10 to15 atmospheres produced by water expansion 
deforms the metal sample which is on the top of the chamber. 
 
Numerical simulation of electrohydroimpulse stamping process 
 

Due to difficulties of providing similarity conditions for the considered process, its accurate 
numerical simulation for the small-scale experimental plant becomes very important for further 
construction of a large-scale one. For this reason, it is necessary to provide the following research: 
 

1.  Review of mathematical models used for fast processes analysis; 
2. Development of a mathematical model and computational method for thin sheet dynamic 

deformation under specified pressure on its surface; 
3. Test computations (based on experimental data); 
4. Comparative analysis of experimental and computational results. 

 
In particular, the tasks below have extreme importance 
 



1. Determination of constitutive relationships for the materials to be used; 
2. Adaptation of a computational model in accordance to the specific material characteristics; 
3. Estimation of influence of possible inaccuracy in model parameters on the difference 

between computational and experimental results. 
 
Research method 
 

The electrohydroimpulse stamping of metals is a complicated process, which is characterized 
by development of several physical phenomena and their interaction in time. An additional 
complexity in simulation of such process is related to the fact that the deformation of a blank may 
lead to significant changes in the model geometry. 

Elaboration of any stamping technology requires some estimation for stamping process 
parameters and development of corresponding mathematical models, which are able to represent 
real-life physical phenomena adequately. 

Capabilities of modern engineering software (ANSYS, LS-DYNA, etc.) for providing 
accurate and adequate simulations to the process of elastoplastic metal deformation are wide. It is 
well known, that LS-DYNA is able to provide accurate results for simulation of a fast metal 
stamping process, but there are only a few articles where such an approach is described in 
application to electrohydroimpulse forming of metals. In our opinion, usage of LS-DYNA for all 
stages of simulation (such as selection of a material model, loading, solution, and post processing of 
the results) based on comparison to experimental data is a right way of constructing methods for 
mathematical modeling of EHIS. 
 
Physical phenomena of metal deformation, which are necessary to take into account 
 
 For successful stamping, it is necessary to achieve a high level of plastic deformations, 
therefore a model of plasticity becomes very important. This model should be suitable for simulation 
of plastic behavior of a metal as well as for simulation of a hardening. 
 
Governing system of equations for description of a blank motion is the following: 
 

divu fρ σ ρ= +&& , 
where u  is the displacement vector, ρ is the current density (a function of spatial coordinates only), 
σ  is the Cauchy stress tensor, and  is the body force density. For any model, this system should 
be completed by boundary conditions for tractions and displacements, and by a constitutive 
relationship of the form 

f

( )σ σ ε= , 
where ε  is the total strain tensor, which is the sum of elastic and plastic parts, i.e. 

.e pε ε ε= +  
For example, for a linear elastic material the constitutive relationship has the form 

, eDσ ε ε ε= = , 
where D is the tensor of elastic moduli. 
 
Plasticity 
 

A well-known type of tests to analyze the behavior of a material is the tension of a rod (see 
Fig. 1). The result of such test is represented by plotting the ratio of tensile stress to the initial cross-
sectional area, against some measure of the total strain. 

If the length of a tensile specimen is increased from  to l  the amount of deformation is 
measured as 

0l
)/ln( 0ll=ε  (called logarithmic or natural strain) or as 00 /)( lll −=ε  (engineering or 



conventional strain); they are approximately identical when the change in length is small, but as the 
strain increases natural strain becomes progressively less than engineering strain.  
 

 
Fig. 3. Tension of a rod 

 
Most common engineering materials exhibit a linear stress-strain relationship up to a stress level 
known as the proportional limit (Point A). Beyond this limit, the material behavior becomes 
nonlinear, but not necessarily inelastic. Plastic behavior begins when stresses exceed the material's 
yield point (i.e., the stress level corresponding to Point B). 
                                                                                                              

 
Fig. 4. Typical stress-strain relationships for metals 

(a) – soft metal (copper), (b) – hard metal (steel) 
 

          A – proportional limit 
          B – yield point 
          C – point where hardening starts 
          DE – unloading, EF – repeated loading 
 
Because there is usually a small difference between the yield point and the proportional limit, it is 
typically assumed that these two points are coincident in plasticity analyses. From Point B up to 
Point C the stress remains stable and only deformation increases (see diagram (a)). 
 

For some metals there is no curve interval BC and after Point B the hardening of a material 
starts immediately (see diagram (b)). It is called “hardening” because after unloading and repeated 
loading yielding limit increases. Processes of unloading and repeated loading are also shown in both 
diagrams (curves DE and EF, respectively). For simplified mathematical models of plasticity it is 
usually assumed that these curves are parallel to the starting linear curve OA. 
 
Yield criterion 
 

The yield criterion determines the stress level at which yielding begins. For multi-component 
stresses, it is represented through the definition of the yield function )(σF  of the stress tensor σ . 



For many cases, this function is interpreted as a function of the equivalent (von Mises) 

stress
23
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Eσ σ=  . Here  is the deviator of the tensor D Pσ σ= + Ι σ , where Ι  is the identity 

tensor, tr
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P σ
= − is the pressure and D D D

ij ijσ σ σ= . When the equivalent stress is equal to a 

material yield parameter Yσ , the material will develop plastic strains. If Eσ  is less than Yσ , the 
material is elastic, and stresses develop according to the elastic stress-strain relationship. 
 

 
Fig. 5. Stress-strain relations for the simplest mathematical models of plasticity 

 
Case (a) corresponds to the perfect plasticity (no hardening), and Case (b) represents behavior with 
linear hardening where there are two linear parts of the stress-strain curve. 
 
Yield surface 
 

In case of a complicated stress state for description of a yielding start conditions it is 
necessary to input yield function . Stress is considered to be acceptable ifF ) ≤(σF 0 . That surfaces, 
for which 0)( =σF  , are called yield surfaces. Any stress state corresponding to the point inside 
yield surface can be reached purely with elastic deformations. Plastic deformations occur only if 

0)( =σF
(
(on the yield surface). In case of a perfect plasticity yield surface remains constant. Area 

where 0) <σF  is called the elastic area, and area where 0)( =σF  is called the plastic one. 
A material element is said to be in an elastic state if )( 0<σF , and in a plastic state 

when 0)( =σF . For plastic yielding, the element needs to be in a plastic state ( ), and to 

remain in a plastic state ( ); otherwise the plastic strain rate 

0=F

0 p=F& p
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 vanishes (in common 
plasticity theory time is not taken into account, but it is used as a parameter which controls the 
loading process, then dot means the time derivative). Hence =&  for  or (0<F 0=F  and 

); otherwise there is a yielding. The first condition corresponds to the case when element is in 
an elastic state, second – to the case when element passes from a plastic state to an elastic state 
(unloading). For metal under not very high pressure yield function depend not on stress tensor but on 
its deviator. In this case, yield surface can be defined with equation (von Mises criterion) 

0<F&

221( ) 0
2 3

D YF σσ σ= − = . 

In principal stress space 32 ,1 ,  yield surface will look like a cylinder with axis 31σ σσ 2σ σσ ==  
which is perpendicular to the deviatoric plane (where tr 0σ = ). In projection on a deviatoric plane, 
yield surface looks like a circle with center in the origin.  



 
Fig. 6. Yield surface for von Mises criterion 

Hardening  
 

For metals under plastic deformations, yield limit increases with deformation growth. It 
means that the value of the parameter Yσ increases. Metal gains additional elastic properties, and 
loses ability to deform plastically. This phenomenon is called hardening. The hardening rule 
describes how the yield surface changes with progressive yielding, so that the conditions (i.e. stress 
states) for subsequent yielding can be established. 

In work hardening, the yield surface remains centered about its initial centerline and expand 
in size as the plastic strains develop (see Fig. 7 where the projection of the yield surface to the 
deviatoric plane is shown). This option is preferable for our analysis due to the necessity to include 
large strains into a model. 

 
Fig. 7. Yield surface expansion in the model with isotropic hardening 

 
ANSYS LS-DYNA plasticity models 
 
Bilinear Isotropic Model (BISO) 
 

This classical strain rate independent bilinear isotropic (work) hardening model uses two 
slopes (elastic and plastic) to represent the stress-strain behavior of a material (see Fig. 5(b)). Stress-
strain behavior can be specified at only one temperature (a temperature dependent bilinear isotropic 
model is also available). Input elastic parameters are elastic modulus E (the tangent slope to the first 
part of the stress-strain curve in Fig. 5(b)), Poisson’s ratio, and density of a material. The program 
calculates the bulk modulus using the elastic modulus and Poisson’s ratio values. Input parameters 
for the simulation of a plastic behavior are the initial yield limit 0Yσ and the tangent slope Etan to the 
second (plastic) part of the stress-strain curve in Fig. 5(b). A material anisotropy is not supported for 
this model. 

The constitutive relationships for this model are given for rates (or small increments) of 
displacements, stresses and strains. The von Mises criterion of yielding is used. The system of 
corresponding relations have the form 
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where λ is a plastic multiplier which vanishes for elastic state and unloading. 
For any iteration of the solution process, using the so-called plastic tangent modulus 
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ANSYS LS-DYNA calculates the current value of the hardening parameter as 
0( )p p

Y eff Y p effEσ ε σ ε= + , 

where 
0

t
p

eff effd pε ε= ∫  is the current value of the effective plastic strain (which is also called the 

equivalent plastic strain), and the effective plastic strain increment is given by the formula 
2
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From two formulas above follows, that during the calculation process it is necessary to save into 
memory the time history only for the effective plastic strain. The value of λ for every small substep 
of loading comes from the plastic yielding condition  
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The last relation is also used for calculation of increment for hardening parameter. Taking into 
account the above-mentioned explicit form of the function F and the relation 
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we arrive at the expression 
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Johnson-Cook model 
 

This model, also called the viscoplastic model, is a strain-rate and adiabatic (heat conduction 
is neglected) temperature-dependent plasticity model. This model is suitable for problems where 
strain rates vary over a large range. 
 



Johnson and Cook express the yielding limit as 
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where  are material constants, meltTmncBA ,,,,,
0

p
effε
ε
&

&
is the dimensionless plastic strain rate, 0ε& – 

the initial strain rate (usually is treated as 1.0 s-1). Input parameters for the simulation are the elastic 
modulus, Poisson’s ratio, density of a material and all above-mentioned material constants. There is 
also a part of the model for fracture, but in our case, no fracture was detected. Temperature 
dependence is neglected due to experimental data that show no heating of a metal after deformation 
(it is also often neglected because of insufficient experimental material data). 
 
Equation of state (EOS)  
 

In the case of the Johnson-Cook model, an equation of state describes relationship between 

the pressure P , the specific internal energy E  and the relative volume 0V ρ
ρ

= , where 0ρ is the initial 

density. If V  and E  are independent thermodynamic functions it is sufficient to write this equation 
of state using only one function 

),( EVPP = . 
 

There are two suitable types of equations in ANSYS LS-DYNA. They are called “linear 
polynomial” and “Gruneisen”. 
 

The linear polynomial equation of state has the form 
ECCCCP )( 4321 μμμ +++=  , 

where 1
0

−=
ρ
ρμ  is a dimensionless parameter. For expansion process ( 0<μ ), term  is set to 

zero and equation transforms into  

2
2μC

ECCCP )( 431 μμ ++= . 
 
Gruneisen equation of state is used for high pressures. 
For compressed materials it has the following form: 
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where 0γ  is the Gruneisen gamma, and  – material constants. For expanded materials 
the equation becomes    

acSSS ,,,, 321

EaCP )( 0
2

0 μγμρ ++= . 
 
If the parameter μ  is small, linear polynomial and Gruneisen equations of state are almost identical 
to each other. It is known from the literature that to achieve the value of μ = 0.2 it is necessary to 
provide a pressure about 30 GPa, which is much higher than the range of pressures in our 
experiments. Therefore, the difference between these two models is insignificant (that is approved 
by computations).  
 



Below we present some results of numerical simulation for copper stamping at three regimes 
of pressure distributions in time. We also compare numerical results with experimental results 
obtained on the small-scale plant. 
 
Required data for simulation 
 
1. Geometrical model; 
2. Material model; 
3. Material properties for a selected material model (density, Poisson’s ratio, elastic modulus, plastic 
properties and other material constants); 
4. Finite Element model based on a selected type of element; 
5. Boundary conditions; 
6. Loading as a function of time and spatial coordinates; 
7. The termination time for simulation; 
 
Geometrical and finite element model 
 
The model consists of  tree parts:  
the deformable metal blank (cyan), 
rigid holder (blue) and  
rigid die (red),  
1/4th symmetry was used  
to reduce the amount of 
calculations.  
 
Blank size:  
thickness 0.5 mm 
radius 20 mm  
 
The SOLID164 element is used 
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Near the die edge mesh was  
refined for accurate computations 
in area where 
plastic deformations mostly occur 
 
Mesh: 
59 349 nodes 
50 528 elements  
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Pressure on the deformable metal blank was measured experimentally and then approximated via 
sharp or smooth curves. Results of such an approximation are depicted below. 
 
Loading (1) Maximum pressure: 1.4 MPa 
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Fig. 8. Experimental pressure curve (left), ANSYS LS-DYNA pressure curve (right) 
 
The pressure via time curve has tooth-saw peeks. Loading begins not from the zero time but from 
time about 1.7 milliseconds, but we begin loading from zero. 
 
Loading (2) Maximum pressure: 2.5 MPa 
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Fig. 9. Experimental pressure curve (left), ANSYS LS-DYNA pressure curve (right) 
 
Curve was approximated smoothly because of its complex structure. 
 
Loading (3) Maximum pressure: 3.3 MPa 
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Fig. 10. Experimental pressure curve (left), ANSYS LS-DYNA pressure curve (right) 



 
Material constants for copper 
Elastic modulus       120.0e9     N/m2 

Poisson’s ratio         0.343 
Density                    8930          kg/m3 

 
Constants for BISO model 
Yielding limit          70.0e6       N/m2 
Tangent slope          2.0e9         N/m2 
 
Constants for Johnson-Cook model 
Room temperature   27             °C 
Melt temperature     1083         °C 
Initial strain rate       1.0 
Specific heat            385            Joule / kg °C 
A                              89.63e6     N/m2 
B                              291.64e6   N/m2 
n                               0.31       
c                               0.025  
Constants for EOS 
C1                             140e9        N/m2 
C2                             2.8e9         N/m2 
C3                             1.96 
C4                             0.47 
 
Results  
 
Maximum deflection for copper blank: 
max pressure, MPa Experiment, mm BISO, mm Accuracy, % Johnson-Cook, mm 
1.4 1.60 1.48 7.5 0.78 
2.5 3.00 2.85 5.0  
3.3 3.50 3.40 2.9  
Time of a typical computation – about 15 hours 
(AMD Athlon(tm) 64x2 Dual Core Processor 6000+ 3.00 GHz, 3 Gb RAM) 
Average accuracy for BISO model – 5.1% 
Johnson-Cook model provides unsatisfactory results. 
 
Let consider the last examples in more details.  
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Fig. 11. Total displacement via time 
 

On the Fig. 11 we can see how the total displacement changes in time. From these pictures, it 
follows that the deformation mostly grows up in the period of 1—16 time steps, but the termination 
time for calculations corresponds to the set number 200. Analyzing the results, we conclude, that 
from the time step 20 (0.313e-3 sec) only elastic damped oscillations are present. But the amplitude 
of such oscillations is small enough and we leave them out of account. The accuracy of calculation 
of the final total displacement is about 3% that is good for engineering purposes. 
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Fig. 12. Von Mises plastic strain via time 
 

The same situation occurs for plastic deformations. They are stable beginning from the time step 20 
(0.313e-3 sec). Up to this moment, the total level of plastic deformations is achieved. 
 
Conclusions 
 
1. BISO model is more adequate for description of “slow” processes with a moderate pressure. 
2. Mean error of the computations with BISO model is about 5%. Plastic deformations occur 

where they were expected theoretically. 
3. Deformation of a blank in small-scale experimental plant is well simulated by BISO model. 
4. Johnson-Cook model is a more complicated and, in our case, it provides worse correlation 

with experimental results. 
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