Numerical Simulation of Pressure Surge with the Method of Characteristics

R. Fiereder

02.04.2009 Saint Petersburg, Russia

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Content

- Motivation
- Governing Equations
 - Continuity Equation
 - Momentum Equation
- Method of Characteristics
- Implementation
- Boundary Conditions
- Application
 - pressure surge
 - oscillating valve
 - surge chamber oscillations
 - power plant simulation

Motivation

- Simulation of interaction of plant components
- Identification of resonance cases

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Motivation

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Governing Equations

• compressible

• Momentum equation

ТШ

Continuity Equation

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

ПΠ

Continuity Equation

Continuity Equation

$$\frac{1}{\rho}\frac{d\rho}{dt} = \frac{1}{E_F}\frac{dp}{dt}$$

- Fluid compressibility
 - Hooke's law applies

$$E_F = \frac{dp}{dV_V}$$

- Mass in Control Volume is constant

$$dm = Vd\rho + \rho dV = 0$$

$$\frac{dV}{V} = -\frac{d\rho}{\rho}$$

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

ПΠ

Continuity Equation

$$\frac{\partial p}{\partial t} + v \frac{\partial p}{\partial x} + \rho a^2 \frac{\partial v}{\partial x} = 0$$

 $a^2 = \frac{E_{Sys}}{2}$

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

 p_2A_2

Momentum Equation

Momentum conservation $\sum_{i} F_i = \frac{dI}{dt}$ y p_1A_1 Pressure force $F_P = -A \frac{\partial p}{\partial x} dx$ Gravity force $F_g = -\rho g A \frac{\partial z}{\partial x} dx$ Z dxFriction force $\tau_0 = -\frac{\rho \lambda |v| v}{\rho} \qquad \lambda = -\frac{4J_e g R}{v^2}$ $F_{\tau} = -2\pi R \tau_0 dx$

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Final Set of Equations

$$\frac{\partial p}{\partial t} + v \frac{\partial p}{\partial x} + \rho a^2 \frac{\partial v}{\partial x} = 0 \qquad \qquad \frac{1}{\rho} \frac{\partial p}{\partial x} + g \frac{\partial z}{\partial x} + g J_e + v \frac{\partial v}{\partial x} + \frac{\partial v}{\partial t} = 0$$

- First order hyperbolic differential equation system
- Two dependent variables p, v
- Two independent variables x, t
- a, ρ , J_e are parameters of the system
- Solution by means of Method of Characteristics

Method of Characteristics

- Hyperbolic differential equation system
 - Interferences propagate at a certain speed
 - Existence of constant variables along characteristic lines :

$$\left.\frac{d}{dt}R^{\pm}\right|_{C^{\pm}} = 0$$

Riemann Variables

$$\frac{\partial p}{\partial t} + v \frac{\partial p}{\partial x} + \rho a^2 \frac{\partial v}{\partial x} = G_1 = 0$$
$$\frac{1}{\rho} \frac{\partial p}{\partial x} + g \frac{\partial z}{\partial x} + g J_e + v \frac{\partial v}{\partial x} + \frac{\partial v}{\partial t} = G_2 = 0$$

 $G = G_2 + \xi G_1$

$$\left[\frac{\partial v}{\partial t} + \left(v + \xi \rho a^2\right)\frac{\partial v}{\partial x}\right] + \xi \left[\frac{\partial p}{\partial t} + \left(v + \frac{1}{\rho \xi}\right)\frac{\partial p}{\partial x}\right] = 0$$

$$\frac{dv}{dt} + \xi \frac{dp}{dt} + g \left(J_e + \frac{\partial z}{\partial x} \right) = 0$$
$$\frac{dx}{dt} = v + \xi \rho a^2 = \frac{1}{\rho \xi}$$
$$\xi = \pm \frac{1}{\rho a}$$

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Method of Characteristics

$$\frac{dv}{dt} + \frac{1}{\rho a} \frac{dp}{dt} + g\left(J_e + \frac{\partial z}{\partial x}\right) = \frac{d}{dt}R^+ = 0$$

$$t_0 + \Delta t$$

$$C^+ = \frac{dx}{dt} = v + a$$

$$\frac{dv}{dt} - \frac{1}{\rho a} \frac{dp}{dt} + g\left(J_e + \frac{\partial z}{\partial x}\right) = \frac{d}{dt}R^- = 0$$

$$t_0$$

$$t_0$$

$$x_0$$

$$x_1 - x$$

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

Method of Characteristics

Method of Characteristics-Summary

- Solution is only valid on Characteristics
- Area of influence
- Area of dependence
- Characteristics separate two different solution domains

• Simplifications

$$a >> v$$

 $C^{-} = \frac{dx}{dt} = a \longrightarrow$ straight lines,
 $\Delta x = a \Delta t$

velocity v is not known along C
 -> Friction term has to be approximated

$$\int_{A}^{P} J_{e} dt = J \int v^{2} dt \cong J v_{A} |v_{A}| \Delta t + O(\Delta t) = J_{e,A} \Delta t$$

- Required
 - Computational grid
 - Steady-state solution for the system
 - Boundary condition providing a disturbance

- Get system parameters
- Initialize system
 - Calculate Wave velocity a
 - Generate calculation grid
- Calculate steady state solution
 - Stationary Hydraulics
- Calculate solution for time t

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

 Method for calculating new time level

– C+

$$(v_{P} - v_{A}) + \frac{1}{\rho a}(p_{P} - p_{A}) + gJ_{e,A}\Delta t = 0$$
$$v_{P} + \frac{1}{\rho a}p_{P} - v_{A} - \frac{1}{\rho a}p_{A} + gJ_{e,A}\Delta t = 0$$
$$\underbrace{K_{A}^{+}}$$

– C-

analog

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

 $v_P = \frac{K_B^- - K_A^+}{2}$

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

- Calculate λ
- Evaluate boundary condition
- Calculate solution for inner field
- Calculate K⁺ and K⁻

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

active

Boundary Conditions

• Static

_	passive		Reservoir	,	passive	active
_	active		Valve	static	f(p,v)	f(p,v,t)
٦vr	amic			dynamic	$f(p, \frac{dp}{dt}v, \frac{dv}{dt})$	$f(p, \frac{dp}{dt}v, \frac{dv}{dt}, t)$
Dynamic						

- passive surge chamber

nonaiva

- Reservoir
 - − p = const. ____ v is calculated
 - compression waves are reflected as expansions waves
 - expansions waves are reflected as compression waves
- Wall
 - v = 0 \longrightarrow p is calculated
 - waves are reflected

• Valve

_

 $- \quad v = f(\Delta p, \tau, \zeta)$

$$v_1 = \zeta \tau \sqrt{\frac{2}{\rho} \cdot \left| p_0 - p_1 \right|}$$

- $\zeta \rightarrow$ loss coefficient

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

- Surge chamber
 - p_W can not be computed directly $Q_W(h_w,...)$
 - predictor corrector scheme
 - guess for p_w
 - calculate Q_W
 - correct p_w
 correct Q_w

} iterate till convergence

$$\frac{dh}{dt} = \frac{1}{A_W(h)} \left(Q_{W,L} - Q_{W,R} \right)$$

$$\Delta h_W = h_{W,t_0+\Delta t} - h_{W,t_0}$$

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

- Turbine
 - Machine data
 - Mass moment of inertia of machine and rotating fluid
 - Hill chart
 - Generator
 - Governor
 - Power Grid

PRESSURE SURGE

- Joukowski pressure surge
 (Жуковский)
 - sudden closure of a Valve
 - kinetic energy of fluid is converted in pressure

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

OSCILLATING VALVE $T_{\tau} = T_{R}$

- Results
 - pressure and velocity in time at the valve
 - pressure and velocity in time in middle of the pipe

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

OSCILLATING VALVE $T_{\tau} = 2T_{R}$

- Pressure and velocity variation along pipe
- $T_{\tau} = 2T_R$

SURGE CHAMBER OSCILLATION

- surge chamber
 - reduces pressure fluctuations
 - hydraulic uncoupling of pressure tunnel from penstock
 - Improvement of control
- surge camber oscillation
 - Interaction of high frequent pressure waves and low frequent inertia waves

SURGE CHAMBER OSCILLATION

• Model

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

SURGE CHAMBER OSCILLATION

- Results
 - Elevation of surge chamber water surface

7.5

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

SURGE CHAMBER OSCILLATION

- Results
 - pressure at the lower end of the penstock
 - pressure at the upper end of the penstock

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling Fakultät für Maschinenwesen Faculty of Mechanical Engineering

POWER PLANT

- Model
 - Simulation of plant, governor, grid and machine
 - Francis turbine
 - Isolated grid

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

POWER PLANT

- start up
 - open loop control to overcome mass moment of inertia
 - synchronization
 - closed loop control by governor

POWER PLANT

- load rejection
 - Sudden load rejection caused by failure in grid or generator

Thank you for your attention!

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

- Method for calculating new time level
 - Initial solution
 - constant velocity
 - low pressure

- Method for calculating new time level
 - valve closes suddenly

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

- Method for calculating new time level
 - disturbance propagates upstream
 - half time step

- Method for calculating new time level
 - Next time level
 - calculate solution on intersection Point

 Method for calculating new time level

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

 Method for calculating new time level

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Fakultät für Maschinenwesen Faculty of Mechanical Engineering

 Method for calculating new time level

Fakultät für Maschinenwesen Faculty of Mechanical Engineering