

Laboratory of Applied Mathematics and Mechanics

Multiprocessor simulations of turbulent diffusion flames

Alexey Frolov BSc

frolovalex@lamm.spbstu.ru

St-Petersburg State Polytechnic University Russia

Content

- > Motivation and work objectives
- > Experiment and problem statement
- > Simulation results
 - > Test simulations
 - > Comparative analysis of physical models
 - > Calculating efficiency of clusters and models
- > Conclusions
- > Future work

Introduction

- Motivation
 - Computational Combustion is the most difficult area of Computational Fluid Dynamics (CFD)
 - Tight interaction between phenomena of different nature: turbulence, combustion and radiation
 - Wide spectrum of engineering applications: furnaces, turbines, engines, fires
 - Powerful computational software (Ansys Fluent etc.) and multiprocessor computers

Introduction

• Primary aim

Accurate modeling of real-life problems like fires and industrial combustors using reliable verified models

Objectives

- Pose model problem (test flame) with detailed statement and experimental data
- Examine conventional engineering models
- Research capabilities of advances chemistry models like slow chemistry and pollutant emissions
- Research capabilities of large eddy simulation turbulence model

Problem description

- Object of research
 Sandia Flame D (Sandia National Laboratories, CA, USA)
- Experimental data
 - High-precision laser measurements
 - Mean and root-mean-square (RMS) profiles of temperature, velocity components, concentrations of 9 major species
 - Axial and 8 radial profiles

Problem description

Sandia Flame D

- Jet flame with pilot-stabilizer
- Premixed methane-air mixture
 - Highly reduced pollutant formation
 - Accurate experimental measurement
 - Avoiding flame extinction
- Fully developed turbulence
 Reynolds number, based on jet speed
 Re=22400

Problem description

High-precision laser measurements

Raman spectrometry

PIV measurements

LIF & PLIF spectrometry

CO, OH LIF measurements

Problem statement

Problem domain and boundary conditions

Favre-average (filtered) Navier-Stokes equations for multicomponent reacting medium k-E Standard **Continuity equation:**

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \, \widetilde{u}_j}{\partial x_i} = 0$$

Momentum transport equation:

$$\frac{\partial \overline{\rho} \,\widetilde{u}_i}{\partial t} + \frac{\partial \overline{\rho} \,\widetilde{u}_j \,\widetilde{u}_i}{\partial x_j} = -\frac{\partial \overline{\rho} \,u_j'' u_i''}{\partial x_j} + \frac{\partial \overline{P}}{\partial x_j} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \overline{\rho} g$$

 $\frac{\partial \overline{\rho} \widetilde{h}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{h}}{\partial x_{i}} = \frac{\partial \overline{P}}{\partial t} + \frac{\partial \overline{\rho} u_{j}' h''}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} \left(\overline{F}_{j,h} + \overline{u_{i} \tau_{ij}} \right) - \frac{\partial q_{j}'}{\partial x_{i}} + \overline{\rho u_{i} g_{i}}$

Species transport equation:

$$\frac{\partial \overline{\rho} \, Y_{\alpha}}{\partial t} + \frac{\partial \overline{\rho} \, \widetilde{u}_{j} Y_{\alpha}}{\partial x_{j}} = -\frac{\partial \overline{\rho} \, u_{j}'' Y_{\alpha}''}{\partial x_{j}} - \frac{\partial F_{j,\alpha}}{\partial x_{j}} + \frac{\overline{r_{\alpha}}}{\partial x_{j}}$$
In thalow transport equation:

RANS Turbulence models:

- k-E RNG
- k-& Realizable
- k-w Standard
- k-ω SST
- **RSM Linear**
- **RSM Quadratic**
- **RSM Low Reynolds**

LES Smagorinsky

Favre-average (filtered) Navier-Stokes equations for multicomponent reacting medium

Continuity equation: Chemistry models: $\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \, \widetilde{u}_j}{\partial x_j} = 0$ **Eddy Break-up model** (EBU) **Mixture fraction based** • Momentum transport equation: statistical model (PDF) $\frac{\partial \overline{\rho} \,\widetilde{u}_i}{\partial t} + \frac{\partial \overline{\rho} \,\widetilde{u}_j \,\widetilde{u}_i}{\partial x_j} = -\frac{\partial \overline{\rho} \, u_j'' u_i''}{\partial x_j} - \frac{\partial \overline{P}}{\partial x_j} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \overline{\rho} g_i$ **Radiation models:** Species transport equation: **Discrete transfer** $\frac{\partial \overline{\rho} \, \widetilde{Y}_{\alpha}}{\partial t} + \frac{\partial \overline{\rho} \, \widetilde{u}_{j} \, \widetilde{Y}_{\alpha}}{\partial x_{j}} = -\frac{\partial \overline{\rho} \, u_{j}'' Y_{\alpha}''}{\partial x_{j}} - \frac{\partial \overline{F}_{j,\alpha}}{\partial x_{j}} + \overline{\dot{r}_{\alpha}}$ **Discrete ordinates** Enthalpy transport equation: $\frac{\partial \overline{\rho} \widetilde{h}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{h}}{\partial x_{i}} = \frac{\partial \overline{P}}{\partial t} - \frac{\partial \overline{\rho} u_{j}' h''}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} \left(\overline{F}_{j,h} + \overline{u_{i} \tau_{ij}} \right) - \frac{\partial \overline{q_{j}'}}{\partial x_{i}} + \overline{\rho u_{i} g_{i}}$ 10/37

Turbulence models

- Family of k-ɛ turbulence models
 Turbulent kinetic energy and its dissipation rate
- Family of k-ω turbulence models
 Turbulent kinetic energy and specific dissipation rate
- Family of Reynolds Stress models Six turbulent stresses separately
- Large Eddy Simulation model
 Subgrid turbulence models without additional equations

$$\frac{\partial \overline{\rho}(\cdot)}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j}(\cdot)}{\partial x_{j}} = \frac{\partial}{\underbrace{\partial x_{j}}_{Diffusion}} (\dots) - \underbrace{(\dots,)}_{\text{Production}} - \underbrace{(\dots,)}_{Dissipation}$$

Chemistry models

 Eddy Break-up model Fast chemistry assumption (infinitely fast reactions)

$$\widetilde{\dot{r}}_{\alpha} = A\overline{\rho}\frac{\varepsilon}{k}\min\left(\widetilde{Y}_{fuel}, \frac{\widetilde{Y}_{ox}}{s_{ox}}, B\frac{\widetilde{Y}_{prod}}{1+s_{ox}}\right)$$

- Statistical model (mixture fraction approach)
 - Equilibrium chemistry Incapability of predicting slow chemistry
 - Flamelet models
 - Thin flame assumption
 - Large-scale curvature of flame
 - Capability of using detailed chemistry mechanisms

Inlet boundary profile impact
Velocity experimental profile seriously affects the flame
Scalar experimental boundary profile impact on the flame is negligible

Domain dimensions impact

Domain widening is unreasonable

Approximation order impact

- Discretization order does not seriously affect physical fields
- Still 2-nd order discretization will be used further

Radiation impact

 Radiation consideration affects only temperature field (100 K higher peak value)

 Scalar fields are not seriously affected by radiation

Radiation was considered in all simulations

Simulation results

Turbulence and chemistry modeling strategies:

	Favre time-averaging (RANS)	Large eddy simulation (LES)
Eddy break-up model (<i>EBU</i>)	✓(8x2)	✓(1x1)
Statistical model (<i>PDF</i>)	✓(8x4)	✓(1x1)

+ Accounting for radiation

Reynolds time-averaging (RANS)

Chemistry: Eddy Break-up model

• Peak temperatures are greatly overestimated (about 300 K)

• Peak concentrations of reaction products are greatly overestimated (about 15-40%)

Reynolds time-averaging (RANS)

Eddy Break-up model improvement

• Generally accepted value of A-constant is 4.0

$$\widetilde{F}_{\alpha} = A\overline{P} \frac{\varepsilon}{k} \min\left(\widetilde{Y}_{fuel}, \frac{\widetilde{Y}_{ox}}{s_{ox}}, B\frac{\widetilde{Y}_{prod}}{1 + s_{ox}}\right)$$

- Optimal constant value is A=1.0
- Significant variation of constant means poor model adaptability to different types of reacting flows

Temperature [K]

1300 1200

1100 1000 900

0.4

z (m)

0.2

Ó.

Theory interlude

Chemistry: statistical model

Transport equation for α -specie:

 $\frac{\partial \rho Y_{\alpha}}{\partial t} + \frac{\partial \rho u_{j} Y_{\alpha}}{\partial x_{j}} = -\frac{\partial F_{j,\alpha}}{\partial x_{j}} + \dot{r}_{\alpha}$ Combining different equations:

$$\frac{\partial \rho (Y_{fuel} - Y_{\alpha} / s_{\alpha})}{\partial t} + \frac{\partial \rho u_{j} (Y_{fuel} - Y_{\alpha} / s_{\alpha})}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \rho \mathcal{D}_{\alpha} \frac{\partial (Y_{fuel} - Y_{\alpha} / s_{\alpha})}{\partial x_{j}} = 0$$

Mixture fraction is a concrete conserved scalar:

 $Z = \frac{Y_{fuel} - Y_{ox} / s_{ox} - \left(Y_{fuel}^{air} - Y_{ox}^{air} / s_{ox}\right)}{Y_{fuel}^{fl} - Y_{ox}^{fl} / s_{ox} - \left(Y_{fuel}^{air} - Y_{ox}^{air} / s_{ox}\right)}$

Using equilibrium dependencies:

 $Y_{\alpha} = Y_{\alpha}(Z)$ T = T(Z) $\rho = \rho(Z)$

Averaged quantities with B-function as density function:

$$\widetilde{Y}_{\alpha} = \int_{0}^{1} Y_{\alpha}(Z)\widetilde{P}(Z)dZ \qquad \qquad \widetilde{T} = \int_{0}^{1} T(Z)\widetilde{P}(Z)dZ \qquad \qquad \overline{\rho} = \left(\int_{0}^{1} \rho^{-1}(Z)\widetilde{P}(Z)dZ\right)^{2}$$

Reynolds time-averaging (RANS)

Chemistry: statistical model

- Significantly more accurate flame prediction
- Correct peak values of temperature and reaction products
- More narrow and long flame than in Eddy Break-up model

Reynolds time-averaging (RANS)

Turbulence models

• Best models with two additional turbulence equations: $k-\varepsilon$ Realizable and $k-\omega$ SST

 Quadratic Reynolds Stress model (RSM) is the most accurate stationary model

k-ε Standard, k-ε RNG, k-ω Standard, RSM
 LowRe models are significantly worse

Temperature [K]

1300 1200

1100

1000 900 800

700

600 500 400 0.4

Ê 0

0.2

Ó.

Theory interlude

- Favre time-averaging (RANS) is a conventional engineering approach
- Large Eddy Simulation (LES) capabilities
 - Less modeling, more calculation
 - Enables explicitly resolve energy-bearing long-wave part of vortex spectrum
 - High computational cost
 - Currently introduces in engineering practice

Large Eddy Simulation (LES

徽

24/37

Large Eddy Simulation (LES) 1900

Chemistry model

 Eddy Break-up model for LES is more accurate than Eddy Break-up model for RANS

$$\widetilde{\dot{r}}_{\alpha} = A \overline{\rho} \tau^{\gamma} \min\left(\widetilde{Y}_{fuel}, \frac{\widetilde{Y}_{ox}}{s_{ox}}, B \frac{\widetilde{Y}_{prod}}{1 + s_{ox}}\right) \qquad \tau^{r} = \left(\sqrt{2S_{ij}S_{ij}}\right)^{-1}$$

- Statistical model is still preferable
- Good agreement for 2-nd order statistics

800

700

600 500 400

Large Eddy Simulation (LES)

Turbulence comparison

- Perturbations were not generated at inlet (LES)
- Good agreement for LES up to the peak
- The simplest LES model is inferior only to the most comprehensive RANS model
- LES (as Quadratic RSM) predicts correct shape of the flame

Large Eddy Simulation (LES)

Velocity spectrum

• The spectrum -5/3 region is captured quite well

Theory interlude

Chemistry: flamelet model

Statistical model complication - flame structure in mixture fraction space

$$\frac{\partial Y_{\alpha}}{\partial t} = \dot{r}_{\alpha} (Y_{\alpha}, T) + \frac{1}{2} \chi \frac{\partial^2 Y_{\alpha}}{\partial Z^2}$$

 χ -scalar dissipation (parameter)

$$\chi = 2 \operatorname{Om}\left[\left(\frac{\partial Z}{\partial x_1}\right)^2 + \left(\frac{\partial Z}{\partial x_2}\right)^2 + \left(\frac{\partial Z}{\partial x_3}\right)^2\right]$$

Scalar dissipation is proportional to strain rate

Characteristics:

- Capability of using detailed chemistry mechanisms
- Thin flame front assumption
- Fast flame adaptation to flow field assumption

Statistical chemistry

Flamelet construction

- Scalar dissipation does not affect temperature and major species
- Intermediate species are highly scalar-dissipation-dependent
- Still some serious numerical deviations near $\chi = 0$

Statistical chemistry

Flamelet construction

ł.

Statistical chemistry

Flamelet model

• Flow, scalar and major species fields are quite the same as in Equilibrium chemistry

 Intermediate species fields are significantly improved

 Bad NO field prediction due to specific processes of NO formation

Computational resources

λ cluster
Cores count:
Processors:
Memory:
Network connection:
Peak performance:
Operating system:

Laboratory of Applied Mathematics and Mechanics

256 (64 nodes) AMD Opteron 280 512 Gb Infiniband 1035 GFLOPS SUSE Linux

ε cluster
 Cores count:
 Processors:
 Memory:
 Network connection:
 Peak performance:
 Operating system:

16 (4 nodes) AMD Opteron 265 8 Gb Gigabit Ethernet 35 GFLOPS Windows CCS

「私

Models computational efficiency

- Chemistry: Eddy Break-up model is significantly faster than statistical model (PDF)
- Turbulence: RSM Quadratic Model is optimal stationary model
- In general: More accurate model requires more calculation time

Cluster computational efficiency

 Windows CCS and Linux SUSE have equal paralleling efficiency in this type of simulations

- ε cluster capabilities are insufficient for Large Eddy Simulations LES
- Computational time on λ-cluster: 5 weeks on 48 cores

Code efficiency

Fluent simulation

- 725 000 computational cells
- 16 (real) processors
- 25 000 time steps
- 840 hours

Shekli et al.* simulation

930 000 computational cells

35/37

- 6 processors
- 50 000 time steps
- 110 hours

$$\widetilde{k} = \left(\frac{930000}{725000}\right)^3 \frac{1/6}{1/16} \frac{50000}{25000} \frac{1/110}{1/840} \approx 86$$

General conclusion:

Fluent specific code efficiency is 50 – 200 times poorer than in-house code

* - M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, S.B. Pope "Large eddy simulation of a turbulent non-premixed piloted methane jet flame (Sandia Flame D)", Proc. of Comb. Inst., 30, 2005

Conclusions

 Simple turbulence and chemistry models usage leads to severe errors in turbulent flame simulations

 Statistical Chemistry model significantly excels Eddy Break-up model

 RSM Quadratic, k-ε Realizable and k-ω SST stationary turbulence models are recommended

 Large Eddy Simulation provides lots of additional information but requires much computational time

• Windows CCS and Linux SUSE equals in paralleling efficiency on Fluent software

Future work

 Detailed research of flamelet chemistry models and reaction mechanisms

 Inspecting boundary perturbations impact on flame structure in LES

- Processors load balancing research
- Accurate pollutant emission models incorporation

Danke schön für Ihre Aufmerksamkeit!

家

