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1 Introduction 

This paper is devoted to the development of fast algorithm for solving the 

contact problems. Contact problems often arise in different engineering 

applications. While solving these problems it is necessary to take into account the 

possibility of contact between body and an obstacle. The main difficulty is that the 

area of possible contact is unknown in advance. As a rule, iterative process is used 

to solve such kind of problems. However, it leads to high computational and time 

costs. In addition, it may happen that iterative process will not converge. At the 

same time one may require to perform the fast computations. Algorithm presented 

in this paper allows doing this in certain important cases.     
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2 General algorithm description 

Let us consider a deformable body fixed in some points (see Fig. 1). Let us 

call a zone on the body surface where contact with obstacle may occur as a contact 

zone. We choose a system of computational nodes ( )ncncncnCN ,,, 21 L=  in the contact 

zone (see. Fig. 1). Computational nodes are the points where computations of 

body’s displacement are performed.  

Deformable body 
Fixations 

Contact zone Computational nodes 
 

Fig. 1. An example of contact zone and system of computational nodes 

Let ( )nznynxzyxzyx
T pppppppppP ,,,,,,,,, 222111 L=

ixp

 be a vector of loads, applied in 

computational nodes, where  is a load, applied in i-th node in X direction,  is 

a load, applied in i-th node in Y direction, etc. The action of loads causes 

displacements of computational nodes 

iyp

( )nznynxzyxz uuuuuuu ,,,,,,, 2221 Lyx
T uuU ,, 11=  (  

is a displacement of node cni under the action of P in X direction). During this 

stage the obstacle is not considered.   

ixu

Forces P and displacements U  are connected by the formula: 

UKP ⋅= ,                                                                 (1) 

where K is rigidity matrix of mechanical system.                                  

We take note that denoted matrix K doesn’t correspond to the rigidity matrix 

of some finite element model. In present case K is computed in a following way:  

A force equal to 1 Newton is applied in the first computational node in X 

direction. The values of displacements of computational nodes under applied load 
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are calculated in all coordinate directions: X, Y и Z (for example, it can be done 

with the help of FEM complexes such as ANSYS, NASTRAN, etc.). Obtained 

vector of displacements becomes a first row of flexibility matrix R, inverse to 

matrix K: 

PRU ⋅=                                                       (2) 

Then the unit load in Y direction is applied in first computational node and 

again the values of displacements of computational nodes are calculated in all 

directions. Thus we obtain the second row of flexibility matrix R . By analogy we 

compute the third row of matrix R  applying the unit load in Z direction.  

We fill in the flexibility matrix R  by repeating the procedure described above 

for all computational nodes. Hereby flexibility matrix has  dimensions: 

where n is the number of computational nodes.   

nn 33 ×

To obtain the rigidity matrix we are to inverse the flexibility matrix 1−= RK .  

Rigidity matrix corresponds to the body’s ability to react on external load. It is 

defined by the geometry of the body, material properties, boundary conditions 

(fixations) and also by the computational nodes’ positions . 

Consequently, variation of these parameters requires recalculation of rigidity 

matrix. 

( )ncncncnCN ,,, 21 L=

Introducing the rigidity matrix we replace the body itself by the system of 

computational nodes, where forces and displacements are related by (1). We are 

only interested in the displacements in the contact zone. Thereby computational 

nodes are chosen only in this area.  

Our aim is to find the displacements of computational nodes, when the 

deformable body is subject to external forces, taking into consideration the 

presence of an obstacle, which constrains body’s displacement and interacts with it 

via the friction. 

Usually such type of problems is solved by finite element method so that the 

conditions of non-penetration are followed. Developed algorithm is based on a 

different approach, which uses the minimization of quadratic functional under 

linear constraints. Due to this approach high computational speed is achieved.  
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Let us write down the expression for potential energy of a system: 

W(u1x, u1y, u1z, u2x, u2y, u2z,…unx, uny, unz) = UPUKU TT ⋅−⋅⋅
2
1

,           (3) 

where K – rigidity matrix, U – vector of displacements, P – vector of loads.  

Fundamental mechanical statement says that the system is in equilibrium if its 

potential energy is minimal.  

Presence of an obstacle eliminates body’s movement in a following way: 

      AU ≤ Δ,                                                             (4) 

here A – matrix which defines the direction, Δ – vector of initial distances between 

computational nodes and an obstacle in certain direction. More detailed description 

of matrix A and vector Δ is given below. 

Moreover, if it necessary to take into account the friction between body and 

obstacle, then we have to impose the constraints not only on displacements but also 

on forces. According to Coulomb-Mohr law, tangential and normal forces (  and 

 correspondingly) acting in contact zone are related by the formula: 

τF

nF

     nFF μτ ≤ ,                                                        (5)  

where μ  – friction coefficient.  

Thus, the problem of computation of displacements in contact zone turns into 

the problem of quadratic functional minimization (3) under constraints on 

displacements (4) and forces (5). To provide fast computations means to provide 

the linearity of constraints. 

Now let’s consider how described algorithm may be applied to certain 

problems. 
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3 Applications 

3.1 Computation of bodies’ displacements connected by springs taking into 

account the friction 

Let us consider a system of N bodies. Each body has the mass m. Bodies are 

connected by springs of stiffness с (see Fig. 2). The bodies are assumed to be 

material points. The end of outside left spring is fixed in the wall. Initially all the 

springs were not stretched then the horizontal force  was applied to outside right 

body that caused the displacement in the system. Our objective is to calculate 

bodies’ final disposition.  

F

Each body is subject to the friction force , which doesn’t exceed frF mgμ  (g is 

the acceleration of gravity).  

F

 
Fig. 2. Considered system 

We refer one computational node to each body. As a result we obtain a system 

of N computational nodes. We consider only horizontal displacements so the 

problem is one-dimensional. 

Rigidity matrix which connects horizontal forces and displacements has a 

form: 
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The energy of deformation is written like that: 
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xN x2 x1 
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where  is the vector of horizontal displacements of computational 

nodes. 

( T
NxxxX ,,, 21 K= )

Constraints (5) take on form  

1,,1,)()( 11 −=≤−−−≤− −+ Nimguucuucmg iiii Kμμ ;                     (7) 

mguucFmg NN μμ ≤−−≤− − )( 1 .                                            (8) 

Inequalities (7) provide the fulfillment of Coulomb-Mohr law in «inner» 

computational nodes ( 1,,1 −= Ni K ), and inequality (8) – in the last computational 

node (outside right in Fig. 2).  

Thus it is necessary to find such a vector of displacements X, which provides 

minimum to functional (6) under constraints (7) and (8). 

Let’s find numerical solution for the system of three bodies (N=3). Input data 

are as follows: spring stiffness 
m
N1=c , friction coefficient 2.0=μ , body’s mass 

 kg. Then friction force doesn’t exceed value of 4 N. 2=m

Stated problem has analytical solution: 
{ }

c
FiNF

xx fr
ii

0,)1(max
1

−+−
+= − ,   Ni ,1=                                        (9) 

Table 1 presents the results of numerical solution using the described 

algorithm. We should note that numerical solution is the same as analytical one. 

Table 1 Numerical solution for the problem  

№ F 
(N) 

1x  
(m) 

2x  
(m) 

3x  
(m) 

Scheme of bodies’ displacements 

1 3 0 0 0 

 

2 6 0 0 2 

 

3 9 0 1 6 

 

F

F

frF frF

x1 x2 x3 

frF

F

frFfrF

x1 x2 x3 

frF

x1 x2 x3 
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4 14 2 8 18 

 

3.2 Rode bending over the obstacle 

Let us consider the system of elastic rode and absolutely rigid obstacle (see 

Fig. 3). Rode has following characteristics: length 40 mm, Young’s Modulus 

E=1012 Pa, Poisson coefficient ν=0.3, circle cross-section with 0.2 mm2 square. 

Rode is fixed in the right point (Fig. 3). All displacements and rotations in this 

point are forbidden. The gap between rode and obstacle changes linearly from 1 to 

5 mm.  

 
Fig. 3. Geometry of rode and obstacle 

The rode is divided by eight computational nodes (N=8). Every computational 

node can move in horizontal and vertical direction (along x and y axes). Then the 

vector of displacements has a form ( )TyNyyxNxx uuuuuuU ,,,,,,, 2121 KK= . 

Computational nodes are subject to a load ( )TyNyyxNxx pppppp ,,,,,,, 2121 KKP =  (here 

 and  are horizontal and vertical components of load, applied to i-th 

computational node).  

xip yip

Rigidity matrix K of the rode is computed with the help of ANSYS 

Mechanical using the procedure described above.  

As it can be seen in Fig. 3, the obstacle constrains rode’s movement in 

vertical direction. Consequently, inequalities (4) take form:  

      AyU ≤ Δy.                                                          (10) 

x 

y 

x1 
x2 

xN 
Applied loads 

1 mm 

5 mm 

Fixation 

F

frF frF frF

x1 x2 x3 
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Here Ay is the matrix of projection operator on vertical direction, Δy is the vector of 

initial distances between computational nodes and obstacle.  

In this case we don’t take into consideration the friction between rode and 

obstacle. That’s why constraints (5) are not taken into account. 

Thus, the problem is to find the displacement vector in computational nodes 

U, which provides minimum to functional (3) under constraints (10). 

To verify obtained results ANSYS Mechanical is used which allows solving 

the contact problem by finite element method. 

Two numerical experiments were held corresponding to different 

configurations of external loads. Figures 4 and 5 show two schemes of loadings 

and computed deformations.  

 
Fig. 4. Rode deformation under one force 

1500 N 

 

 
Fig. 5. Rode deformation under several forces 

Relative deviation of calculation of displacement (in i-th node) is computed 

according to formulas: 

( ) ( ) ( )
( ) %100⋅
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Table 2 contains relative deviations in each computational node for both 

variants of loading. As it can be seen from a table, maximal relative error doesn’t 

exceed 0.3%. 

Table 2 Relative deviations for both cases of loading 

Variant of loading  
One force (Fig. 4) Several forces (Fig. 5) 

Node 
number ( )iXε , % ( )iYε , % ( )iXε , % ( )iYε , % 

1 0.253 0.000 0.008 0.000 
2 0.034 0.003 0.032 0.082 
3 0.012 0.013 0.045 0.081 
4 0.060 0.014 0.041 0.054 
5 0.183 0.010 0.079 0.043 
6 0.138 0.042 0.069 0.095 
7 0.143 0.020 0.216 0.080 

 

4 Conclusion 

Algorithm presented in this paper is based on the minimization of potential 

energy of the system. It allows solving some particular important contact problems 

fast and accurately. Efficiency of proposed approach is confirmed by two basic test 

examples. In both cases numerical solution is compared to analytical one or to the 

solution obtained in ANSYS.    

Described algorithm may be applied in geomechanics while calculating the 

relative displacement of soil layers. Another sphere of application is modeling of 

riveting process between different parts (usually in aircrafts). 
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