

Modeling of contact interaction with friction

Author: Margarita Kovtun

Saint-Petersburg State Polytechnic University

Objective

- Contact problems are highly nonlinear, their solution is always expensive in terms of time and resources
- Development of the algorithm based on the minimization of deformation energy of mechanical system
- Two main spheres of application: simulation of riveting process, modeling of sliding between soil layers

Contents

- Problem statement
- Rigidity matrix concept
- Computational procedure
- Applications
 - One-dimensional problem
 - Sliding
 - Rode bending
- Future improvements

Problem statement

Two parts are initially separated, distance between them – initial gap

Unknown variables: U – vector of displacements in the contact zone $U = \arg \min W$, where W – deformation energy of the mechanical system

Bodies may slide relative to each other according to the dry friction law

Rigidity matrix (1)

Thus, we substitute the body by its rigidity matrix, having the equality:

$$F = K \cdot U$$

Rigidity matrix (2)

Loads can be applied in computational nodes in any direction

$$F^{T} = (f_{1x}, f_{1y}, f_{1z}, f_{2x}, f_{2y}, f_{2z}, \cdots, f_{nx}, f_{ny}, f_{nz})$$

Rigidity matrix (2)

Loads can be applied in computational nodes in any direction

$$F^{T} = (f_{1x}, f_{1y}, f_{1z}, f_{2x}, f_{2y}, f_{2z}, \cdots, f_{nx}, f_{ny}, f_{nz})$$

Rigidity matrix (2)

Displacements of nodes are calculated in all direction

$$U^{T} = (u_{1x}, u_{1y}, u_{1z}, u_{2x}, u_{2y}, u_{2z}, \cdots, u_{nx}, u_{ny}, u_{nz})$$

Main idea

 $\left| W = \frac{1}{2} U^T \cdot K \cdot U \to \min \right|$

Energy of deformation:

Forces acting on the system are balanced:

Displacements in normal direction are restricted:

Forces in contact nodes should obey Coulomb law:

 $K \cdot U = F$

$$|F_{\tau}| \leq |\mu F_n|$$

One-dimensional problem

Energy of deformation: $W(x_1, x_2, ..., x_N) = \frac{c}{2} \cdot U^T K U = \frac{c}{2} u_N^2 + c \sum_{i=1}^{N-1} u_i^2 - c \sum_{i=1}^{N} u_i u_{i-1}$

where c – spring rate, m – mass

2D sliding

- 2D deformable body
- Made of isotropic material
- Moves on the rigid foundation
- Gap between bodies initially is closed

2D sliding

• Compute rigidity matrix by mentioned procedure

$$W = \frac{1}{2}U^T \cdot K \cdot U \to \min$$

- All the nodes are contact ones:
- Gap is zero: $U_y = 0$

• Couloumb-Mohr law is to be satisfied in each node: $|F_{\tau}| \leq |\mu F_n||$

Relative error:
$$\varepsilon = \frac{\max_{i=1,n} \left| U^{calc} - U^{ANSYS} \right|}{\max_{i=1,n} \left| U^{ANSYS} \right|}$$

Relative error:
$$\varepsilon = \frac{\max_{i=1,n} |U^{calc} - U^{ANSYS}|}{\max_{i=1,n} |U^{ANSYS}|}$$

Dependence of displacements in X-direction on the force value

Dependence of displacements in X-direction on the value of friction coefficient

2D sliding

Body deformation for mu = 1

Body deformation for mu = 0.1

Rode bending

- Zone of possible contact depends on applied loads
- It is necessary to derive iterative procedure

Iterative procedure

Equilibrium equations: $K \cdot U = F$

Unknown forces appear: $K \cdot U = F + f_{contact}$,

 $f_{\it contact}$ - reaction force or friction force

Coulomb-Mohr law: $|F_{\tau}|$

$$|F_{\tau}| \leq |\mu F_n|$$

Iterative procedure

Dependence of displacement in X-direction on the friction coefficient value in the last node

Dependence of displacement in X-direction on the force value in the last node

Dependence of relative error on the force value

Deformation shapes

Future improvements and investigations

- Sliding: modeling two flexible bodies interaction
 - modeling systems with refined meshes
 - 3D geometry simulation

- Riveting process simulation:
 - modeling 2D and 3D objects
 - optimizing the procedure of defining contact zone

Thank you!

