Eugene Petukhov, St. Petersburg State Politechnical University

LES simulation of flow around dam gate section

JASS 2009 March 30 – April 7 St. Petersburg, Russia

Contents

- Motivation
- 2D case
 - Problem statement
 - Results
- 3D case
 - Problem statement
 - Results
- Comparison with experiment

Flood menace for St.Petersburg

The flood in Saint Petersburg, February 3, 2008

St. Petersburg flood defense system

Ship passing channel

Gate operation

Physical tests with scaled model

Problem statement, 2D case

Mesh size: typical – 200-250k cells, up to 800-900k cells

Turbulence model options

RANS models (standard k-e)

No-model approach

Flow Time

Vertical force FFT

Kolmogorov microscales (length)

Kolmogorov microscales (time)

Problem statement, 3D case

Studied cases:

- Distance from gate to bottom:
 - 2, 3, 10 m
- Water level difference:
 - 1, 1.7 m

Flow pattern, pressure

Contours of [static pressure - hydrostatic pressure] on domain middle section

Distance to bottom: 2 m Level difference: 1 m Distance to bottom: 10 m Level difference: 1.7 m

Flow pattern, velocity

Contours of velocity magnitude on domain middle section

0.00e+00 9.	00e-01 1.80e+00	2.70e+00 3.60e+00	4.50e+00 5.40e+006.00e+00	0.00e+00	1.20e+00 2.	40e+00 3.60e+00	4.80e+00	5.00e+00	7.20e+008.00e+00
						3			
									P
		•							
							5		
	Row	Shire.							

Distance to bottom: 2 m Level difference: 1 m

Distance to bottom: 10 m Level difference: 1.7 m

Pressure isosurfaces

Isosurfaces of [static pressure - hydrostatic pressure]

Distance to bottom: 3 m Level difference: 1 m Distance to bottom: 10 m Level difference: 1 m

Vertical force, FFT

Vertical force, FFT

Vertical force, FFT

LES simulation correctness

Fast Fourier transform of velocity magnitude at monitor point in log-log scale

Test case with extended domain

Flow structure

Pressure isosurfaces

 S^2 - W^2 invariant isosurfaces

Comparison with scale model

Scale (1:30) model

Complete model

Physical experiment

Scale (1:30) model of gate section

Scale (1:60) model of gate and ship passing channel

Future activity

- Simulation of free motion of gate
- Study of wave load influence

Simplified model of oil platform under wave load

Collaboration with Microsoft

Work supported by Microsoft Research program.

Thank you!