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Problem  1. Deformation of 
elastic body without obstacle
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Small deformations in the body:

Hook’s law:
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Balance equations:
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Problem  2. Contact of elastic 
body and rigid obstacle

Balance equations:

( )( ) Ku −=σdiv
Boundary conditions:
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Signorini conditions:
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Condition of non-penetration:
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Problem  3. Contact of two 
rigid bodies

Balance equations:

( )( ) Ku −=σdiv
Boundary conditions:
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Conditions in contact area:
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Problem  3. Integrated 
statement
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Integrated statements of contact 
problems
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Minimization of functional

Problem 1 Problem 2 Problem 3
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Algorithm for solving contact 
problems

Variation 
statement

Finite-dimensional 
model

Numeric algorithm

Data preparation

Computation
Computation the gap between the bodies
Input: rigidity matrix of the system

vector of initial gap
vector of applied loads

Solving minimization problem:

obtain the vector of displacements
 

U, which brings the minimum 

to the functional
 

I,
with the restrictions

Output: gap field in the contact area 
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Problems of applicability to the 
models with great curvature

Algorithm features

Modeling of junction of the models with slight curvature of surfaces

Applying loads in normal direction

Computing displacements in normal directions

Difficulties in junction of the models with great curvature
Great tangential displacements Ambiguity in gap definition 
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Test model description

ммGunif 7=
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Tangential displacements in 
gap calculation

1 3.29
2 3.62
3 3.47
4 3.55

Value of 
tangential 
displacements

%100
nu
urel τ=

05=α

090=α

kgF 5=

kgF 5=

1 36.94
2 150.45
3 63.86
4 87.07

Difference in solutions 
with and without 
including tangential 
displacements

1 0.09 
2 0.81
3 0.39
4 0.13 

05=α

090=α

kgF 3=

kgF 17=

1 0.13 
2 0.27 
3 0.10 
4 0.26 

%100
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G
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=ε
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Comparing the methods of 
gap definition

As the difference between initial 
gap and normal displacements: 

According to the model geometry: 

UgG n −=

Difference in solutions with the two 
methods

%100
unif

geomdif

G
GG −

=ε

1 0.00
2 0.01
3 0.00
4 0.01

05=α 090=α
kgF 22= kgF 50=

1 0.86  
2 0.34  
3 0.41  
4 0.80  



14

Comparing results of solution  with  ANSYS

Difference in solutions with 
the two algorithms

%100
unif

ANSYS

G
GG −

=ε

1 0.70 
2 4.91 
3 3.31 
4 1.39  

05=α 090=α
kgF 5= kgF 29=

1 2.33   
2 2.90   
3 1.60   
4 4.19   

Developed 
algorithm ANSYS
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Conclusion

Mathematical statements of contact problems without friction were 
investigated
Solvability of these contact problems was proved on basis of 
minimization of convex functional

Applicability of developed fast algorithm for solving contact problems 
to modeling of junction of models with great curvature was 
investigated
Good correspondence of the results obtained with developed algorithm 
and finite element complex ANSYS was demonstrated
Tangential displacements don’t influence on the gap value, what 
allows to apply the developed algorithm to modeling of junction of 
models with great curvature
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Thank you!
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