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Abstract 
This article gives a short introduction into the aspects of the simulation of 
compressible flows with condensation phenomena. The basic physical aspects are 
presented as well as a mathematical model describing them. Finally, the results of 
the implementation of the model into the Finite Volume Method (FVM) solver CATUM 
are presented. 
 
 
 
Symbols used 
Latin letters 
a Speed of sound 
E Spec. energy 
e Spec. internal energy 
f Frequency 
g Condensate mass fraction 
J Nucleation rate 
mv Mass of a water vapor molecule 
n Number density of droplets 
p Pressure 
pi Partial pressure of i 
ps,∞ Vapor pressure 
pv Partial pressure of vapor 
Ri Spec. gas constant for i 
S Supersaturation 

T Temperature 
t Time 
u Velocity 
κ Adiabatic exponent 
ρ Density 
ρl Density of liquid water 
ρv Partial density of water vapor 
σ Surface tension 
Φ Relative Humidity 
 
Indices 
0 at stagnation 
v vapor

 
 
 
1 Introduction 
 
Compressible flows with condensation are observed for a large variety of applications. 
For example, design and optimization of thermal power plants enforce deep insight 
into the flow dynamics arising within steam turbines. Here, one observes the effects 
of condensation occurring in transonic flows of moist air or steam [1-3, 6, 9]. The 
presence of condensate is known to cause erosive effects due to impacting droplets 
on the surfaces of the blades. Furthermore, self excited oscillation leads to highly 
unsteady load as well as unsteady operating conditions of the turbine. Also, 
condensation leads to noticeable change in lift and drag of airfoils, such as airplane 
wings, and to losses in compression ratio in supersonic compressors as used in 
military jet fighters, too. Hence, the knowledge about these effects and how to deal 
with them is crucial especially during design stage. 
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2 Fundamentals 
 
At low expansion speeds and hence low cooling rates phase transition of vapor or 
vapor/carrier gas mixtures from the gaseous to the liquid phase occurs close to 
equilibrium conditions because the time scales of the flow are far beyond the time 
scale of the phase transition process, for example during the formation of clouds. 
 

 Figure 1: Isentropic expansion, beginning from T0 = 295 K 
 
 
But within transonic flows, which are compressible and have cooling rates of 
∆T/∆t ≈ 107 K/s, non-equilibrium condensation effects play a major role as the time 
scale of advection is smaller than the time scale of the phase transition, which leads 
to subcooled vapor as sketched in Fig. 1 (red line). Now, nucleation and droplet 
growth become significant and drive the meta-stable thermodynamic state towards 
the saturation line (stable equilibrium state). Thereby, the release of the latent heat 
occurs nearly instantaneous and leads to a significant alternation of the flow field due 
to the increase of temperature. 
 
Depending on stagnation conditions, different effects may occour in a certain 
geometry, and their complexity increases especially with stagnation humidity 0Φ :  

 
• Continuous change in density, pressure etc. 
(in 1D: like geometry alteration) 

• Discontinuous changes (shocks)  
• Unsteady effects (oscillations) 
• Unsymmetric, unsteady effects 

 
With increasing 0Φ  the condensation onset shifts towards the area of critical mass 
flux while the amount of released latent heat increases. This leads to a discontinuous 
 

liquid vapor 

0Φ
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Figure 2: Schlieren visualization of self excited shock oscillation in a Laval nozzle [6]. 
Dots indicate the nozzle throat; circular arc nozzle, total throat height 30mm. 

 
 
flow with shocks once that 0Φ  exceeds a certain limit. Further increase of 0Φ  will 
cause transient, oscillating shock waves. 
 
Fig. 2 depicts Schlieren visualizations of a transient Laval nozzle flow of moist air [6]. 
The grey scale corresponds to the gradient of the density in axial direction, where 
lighter areas indicate compressions while darker areas are rarefractions. The five 
pictures show five instants in time of one complete cycle of a self excited shock 
oscillation with a frequency of fcycle = 950 Hz. Starting with the first picture, due to the 
strong acceleration and the corresponding static pressure drop through the nozzle, 
the vapour phase reaches a meta-stable state shortly after the nozzle throat. 
 
The release of latent heat caused by the onset of condensation causes a shock, 
displayed by the right bright line in the second picture. Here, the amount of heat 
released near the critical nozzle throat exceeds the possible amount of heat for a 
steady solution. Hence, the shock can not find a stable position and propagates 
upstream, even trough the nozzle throat (pictures 2-4). Thereby, the shock raises the 
temperature and the vapour phase behind the shock is no longer subcooled. Thus, 
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condensation disappears (picture 5). With the shock disappearing upstream and the 
re-offset of the condensation process, the flow again accelerates to a velocity where 
the vapour phase reaches a meta-stable state and the next cycle starts (picture 1). 
 
Further increase of 0Φ  will finally provoke — at very high levels of 0Φ  — physical 
instabilities and make the oscillation unsymmetric. The goal of this work is to be able 
to simulate all those effects with one program. 
 
 
 
3 Modeling 
 
The effects of homogeneous condensation (nucleation and droplet growth) 
considered in this work were simulated with the finite volume solver CATUM 
(Condensation Technische Universität München), which is a explicit, 1D/2D/3D 
structured multi-block grid solver for inviscid fluids based on a local Riemann 
Problem approach. The Equations to be solved are the Euler Equations and a 
equation of state required due to the compressible nature of the problem: 
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and two transport equations for the condensate mass fraction homg as well as for the 
number density of droplets homn  
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The nucleation process is driven by the nucleation rate homJ  with 
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whereas the droplet growth follows the Hertz-Knudsen law 
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With the absorption probability for water molecules 1=α  and the vapor pressure for 
the curved droplet 
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 Figure 3: Comparison of Schlieren images for validation purposes 
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4 Simulation 
 
For steady flows, the implementation was validated using known experimental test 
cases with available photographic Schlieren images which visualize the density 
gradient in direction of x. This optical method is suitable for comparisons due to ist 
high sensitivity to changes in the flow field. 
 
As can be seen for the subcritical case in Fig. 3, e.g., the computed results match 
perfectly the experimental sample. The area of continuous compression is predicted 
correctly in both position and shape. 
 
For unsteady flows the frequency of the oscillation was taken into account as well as 
numerical schlierem images to confirm the correctness of the simulation results. The 
frequencies obtained matched the values from experiments [1] precisely. 
 
 
 
5 Conclusion 
 
The simulation results obtained with the implemented model above show good 
results both in steady as well as in transient test cases. Hence, CATUM can now be 
considered to predict condensation effects accurately. 
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