

NUMERICAL SIMULATION OF ACTIVE FLOW CONTROL IN TURBOMACHINERY

Dipl.-Ing. Roland Wunderer

Contents

- 1. Project goals
- 2. Theoretical basics Physics
- 3. Theoretical basics Numerics
- 4. Validation
- 5. Results 2D tandem cascade
- 6. Results 3D Francis turbine runner
- 7. Conclusions

1. Project goals

1. Project goals

- Improvement of the simulations of turbine flows in part- and overload:
 CFD
- Numerical study of the active flow control regarding:
 - Affecting the pressure fluctuations on the blade surface.
 - Improving the efficiencies in part- and overload operation.

2. Theoretical basics – Physics

• Problem: Mean angle depends on pitching angle

2. Theoretical basics – Physics

• Problem: Mean angle depends on pitching angle

$$\Rightarrow \alpha = \alpha(\Delta \alpha)$$

$$\overline{c}_{u} = c_{r} \cdot \left[\frac{1}{\sqrt{\alpha_{0}^{2} - \Delta \alpha^{2}}} - \frac{1}{3}\alpha_{0} - \frac{1}{90}\alpha_{0} \cdot \left(2\alpha_{0}^{2} + 3\Delta \alpha^{2}\right) \right]$$

3. Theoretical basics – Numerics

• Modelling turbulence – LES

3. Theoretical basics – Numerics

• Modelling turbulence – Hybrid modelling

 L_t , t_t (boundary.) << L_t , t_t (core)

- ⇒ Modelling the mean effect of the boundary layer on the core flow.
- ⇒ Splitting in RANS und LES region.

4. Validation – channel flow

• Results - isosurfaces

4. Validation – cylinder flow

Re: 3'900, v_{SGS} and p_{stat}

Re: 140 '000, v_{SGS}

Re: 3'600'000, v_{SGS}

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

4. Validation – airfoil at maximum lift

• Contourplot of the vorticity

• Geometry

• Measuring points for the static pressure

• Measuring planes in the channel

• Fixed front blades: separation - streamlines

Separation, second cascade: realtime

Separation, second cascade: time averaged

• Pitching front blades: separation - streamlines

static front blades

pitching front blades

• Pitching front blades: influence on Δp_t

• Pitching front blades: influence on Δp_t – interpretation

$$\Delta p_t = \frac{1}{2}\rho c^2 \varsigma = \frac{1}{2}\rho \frac{Q^2}{b^2 L W_{eff}^2}\varsigma$$

$$\Rightarrow \frac{\Delta p_{t1}}{\Delta p_{t0}} = \frac{\varsigma_1 \cdot LW_{eff_0}^2}{\varsigma_0 \cdot LW_{eff_1}^2} \approx \frac{LW_{eff_0}^2}{LW_{eff_1}^2}$$

	LW_0^2 / LW^2	$\Delta p_t / \Delta p_{t0}$
k = 1.04; Δα = 2.0°	1.0	1.0
k = 1.56; ∆α = 2.0°	0.96	0.97
k = 3.12; ∆α = 2.75°	0.80	0.78
k = 6.25; ∆α = 2.0°	0.86	0.83

• Pitching front blades: influence on ∆pt – interpretation

0.15 0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

Δα [°]

-1

• Pitching front blades: influence on ∆pt Induced energy – pitching power

-2

-0.33fE_dAlpha=1.25°

-0.33fE_dAlpha=2.0°

-0.33fE_dAlpha=3.0°

0.15

C⊦⊡

• Pitching front blades: influence on ∆pt

• Pitching front blades: influence on the direction change

• Pitching front blades: influence on the frequencies

• Pitching front blades: frequency shifting

Normal force

• Pitching front blades: frequency shifting

Static pressure at measuring point 2

• Pitching front blades: frequency shifting

Static pressure at measuring point 6

• Animations

Static front blades, realtime.

Pitching front blades, periodic averaged flow.

• Geometry

• Fixed flow to blades - separation at the leading edge

trailing edge

• Fixed flow to blades - timeseries of force and torque

• Fixed flow to blades – frequency analysis Axial force and torque

• Pitching flow to blades - inlet damping - averaged values

• Pitching flow to blades - inlet damping - averaged values

• Pitching flow to blades – hydraulic efficiency

• Pitching flow to blades – frequency shifting Axial force and torque

• Pitching flow to blades — frequency shifting Axial force and torque

• Pitching flow to blades — frequency shifting Axial force and torque

Institute of Fluid Mechanics o. Prof. Dr.-Ing. habil. Rudolf Schilling

Faculty of Mechanical Engineering

• Pitching flow to blades — amplitude reduction Max and rms amplitudes of the torque

Faculty of Mechanical Engineering

• Pitching flow to blades — amplitude reduction Max and rms amplitudes of the axial force

7. Conclusions

- Reducing the losses due to pitching guide vanes.
- Shifting the frequency maximum due to pitching guide vanes.
- Reducing the pressure fluctuations on the blade surface due to pitching guide vanes.
- Only LES / DES is appropriate to simulate the transient effects with adequate accuracy.

Technische Universität München

--- Thank you ----

