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Multigrid Methods – Definition

Multigrid (MG) methods in numerical analysis are a group
of algorithms for solving differential equations

They are among the fastest solution techniques known
today
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Outline

1. Typical design of CFD solvers

2. Methods for Solving Linear Systems of Equations

3. Geometric Multigrid

4. Algebraic Multigrid

5. Examples
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Different CFD solvers
Typical design of CFD solver

CFD solver

Segregated solverCoupled solver
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SIMPLE Algorithm
Typical design of CFD solver

• segregated, sequential solution
of decoupled transport
equations

• pressure correction equation: 
a tight tolerance for 
guaranteeing mass 
conservation

� Multigrid methods

Momentum Equations

Pressure Correction Equation

Turbulence Equations
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Coupled Solution Algorithm
Typical design of CFD solver

• momentum equations and 
pressure correction equation
are such discretized that one
gets a big coupled block 
equation system

• this equation system becomes 
very large – fast solver 
necessary

�Multigrid methods

Momentum Equations

Pressure Correction Equation

Turbulence Equations
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Coupled Solution Algorithm
Typical design of CFD solver

• Big coefficient matrix consisting of the momentum matrixes, the
pressure correction matrix and coupling matrixes

• The solution vector contains velocity componentes and pressure
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Basic Definitions
Methods for Solving Linear Systems of Equations

• Linear System of Equation:

A: sparse matrix of size n×n, symmetric, pos. diagonal elements, non-positive off 
diagonal elements (M-Matrix)

u: exact solution

v: approximation to the exact solution

• Two measures of v as an approximation to u:

(Absolute) error: e = u - v
Residual: r = f – Av

• Measured by norms: 
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Direct vs. Iterative Methods
Methods for Solving Linear Systems of Equations

• Direct methods
– i.g. Gauss elimination / LU decomposition

– solve the problem to the computational accuracy
– high computational power

• Iterative methods / Relaxation methods
– Gauss-Seidel / Jacobi relaxation
– Solve the problem only by an approximation

– could be sufficient and so be less time consuming
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Iterative methods
Methods for Solving Linear Systems of Equations

• Jacobi relaxation:

• Gauss-Seidel relaxation:
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Properties of Iterative methods
Methods for Solving Linear Systems of Equations

• Example: Poisson equation

• Discretisation:

• Exact solution: u = 0  
error e = u – v = -v

-u'' = 0

u(0)= u(n)= 0

j -1 j j+1
2

-u + 2u - u
= 0

h
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0 nu = u = 0
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Properties of Iterative methods
Methods for Solving Linear Systems of Equations

• Different starting values:

Sinus waves: Fourier modes
Π =  
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Properties of Iterative methods
Methods for Solving Linear Systems of Equations

• Error vs. Number of iteration
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Properties of Iterative methods
Methods for Solving Linear Systems of Equations

• Realistic starting value:

k = 1:

“low frequency wave”
k = 6:

“medium frequency wave”

k = 32:
“high frequency wave”

      
      
      

j
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Properties of Iterative methods
Methods for Solving Linear Systems of Equations

• Error: written in eigenvectors of A:

• Eigenvectors correspond to the modes of the problem

• Our problem: 

Low frequency modes High frequency modes
„Do not dissappear“ „Disappear“
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Improvements of iterative solvers
Geometric Multigrid

• Idea: Have a good initial guess
�How? Do some preliminary iterations on a coarse grid (grid with

less points)
Good, because iterations need less computational time

• How does an error look like on a coarse grid?
It looks more oscillatory! 
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Improvements of iterative solvers
Geometric Multigrid

How does an error look like on a coarse grid?

� If error is smooth on fine grid, maybe good to move to coarse grid.
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Possible schemes for improvement
Geometric Multigrid

• Nested iteration:
– Relax on  Au = f on a very coarse grid 

to obtain an initial guess for the next finer grid
.
.
.

– Relax on Au = f on        to obtain an initial guess for 
– Relax on Au = f on        to obtain an initial guess for 
– Relax on Au = f on        to obtain a final approximation to the 

solution.

• Problems: Relax on Au = f on       ?
Last iteration: Error still smooth? 
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• 2nd possibility: Use of the residual equation

=Au f

− = −A A Au v f v

=Ae r
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Possible schemes for improvement
Geometric Multigrid

• Correction scheme:

– Relax on Au = f on       to obtain an approximation vh

– Compute the residual r = f - A vh

Relax on the residual equation Ae = r on 
to obtain an approximation to the error e2h

– Correct the approximation obtained on      
with the error estimate obtained on       : 

• Problems: Relax on Ae = r on       ?
Transfer from to      ?

Ωh

Ωh

Ω h2 ← +h h h2v v e
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Transfer operators
Geometric Multigrid

• Transfer from coarse to fine grids: Interpolation / Prolongation

• Transfer from fine to coarse grids: Restriction

Ω → Ωh h2

Ω → Ωh h2
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Transfer operators – Interpolation / Prolongation
Geometric Multigrid

• Interpolation / Prolongation: from coarse to fine grid

• Points on fine and on coarse grid:

• Points only on the fine grid:
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Transfer operators – Restriction
Geometric Multigrid

• Restriction: from fine to coarse grid

• Full weigthening: ( )− += + +h h h h
j j j jv v v v2

2 1 2 2 1
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Properties of transfer operators
Geometric Multigrid

Interpolation / Prolongation Restriction

Variational property:
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Properties of transfer operators
Geometric Multigrid

• Transfer of vectors: �

• Transfer of matrix A: 

• Geometric answer:        is discretisation of the problem on the
coarse grid

• Algebraic answer:                             (Galerkin condition )

→h hA A2

hA2

=h h h h
h hA I A I2 2

2
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Recapitulation
Geometric Multigrid

• Iterative methods can effectively reduce high-oscillating errors until
only a smooth error remains

• Smooth errors look less smooth on coarse grids
• Transfer of vectors and matrices from coarse to fine grids possible with

two conditions:
Galerkin condition

Variational property

How can we put this in a good solution algorithm?
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V-Cycle
Geometric Multigrid

● Relax on                      times with initial guess vh

● Compute
● Relax on                        times with initial guess v2h

● Compute

● Relax on                        times with initial guess v4h

● Compute

…

● Solve 
…

● Correct

● Relax                          times with initial guess v4h

● Correct

● Relax                         times with initial guess v2h

● Correct
● Relax                      times with initial guess vh

=h h hA u f ν1

=h h h
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hI2 2 2 4

4v v v
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8v v v
=h h hA4 4 4u f
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V-Cycle
Geometric Multigrid

h

2h

4h

8h

16h

Restricition

Prolongation

Relax
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Other cycles – W Cycle
Geometric Multigrid

4h

2h

8h

h
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Other cycles – Full Multigrid Cycle (FMG) 
Geometric Multigrid

ν0-times

4h

2h

8h

h

ν0-times

ν0-times
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Geometric vs. Algebraic multigrid
Algebraic Multigrid

• Geometric Multigrid: structured meshes
• Problem: unstructured meshes, no mesh at all

• � Algebraic Multigrid (AMG)
Questions:
1) What is meant by grid now?
2) How to define coarse grids?
3) Can we use the same smoothers (Jacobi, Gauss-Seidel)
4) When is an error on a grid smooth?
5) How can we transfer data from fine grids to coarse grids or vice

versa?
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Grid 
Algebraic Multigrid

• GMG: known locations of grid points
well-defined subset of the grid points define coarse grid

• AMG: subset of solution variables form coarse grid
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Smooth error
Algebraic Multigrid

• Defined as an error which is not effectively reduced by an iterative 
method

• Jacobi method: 

• Measurement of the error with the A-inner product:

• Smooth error:
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Smooth error
Algebraic Multigrid

• Smooth error: −
AA
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Implications of smooth error
Algebraic Multigrid
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Selecting the coarse grid - requirements
Algebraic Multigrid

• Smooth error can be approximated accurately. 

• Good interpolation to the fine grid.

• Should have substantially fewer points, 
so the problem on coarse grid can be solved with little expense.
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Selecting the coarse grid – Influence and Dependence
Algebraic Multigrid

• Definition 1:
Given a threshold value               , the variable (point)    strongly 
depends on the variable (point)     if:

• Definition 2:
If the variable     strongly depends on the variable    , 
then the variable     strongly influences the variable   .

θ< ≤0 1 iu

ju

{ }θ
≠

− ≥ −ij ikk i
a amax

iu
iu

ju
ju
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Selecting the coarse grid – definitions
Algebraic Multigrid

• Two important sets:

Si: set of points that strongly influence i,  
that is the points on which the point i strongly depends.

: set of points that strongly depend on the point i.

{ }{ }θ
≠

= − ≥ −i ij ikk i
S j a a: max

T
iS

{ }= ∈T
i jS j i S:
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Selecting the coarse grid - Example
Algebraic Multigrid

• Poisson equation: −∆ =u 0

j -1 i j+1i -1 i i+1
2 2

-u + 2u - u-u + 2u - u
+ = 0

h h

( )i -1 i+1 i j -1 j+12

1
-u - u + 4u - u - u = 0

h

0 105 15 20

1 116 16 21

2 127 17 22

3 138 18 23

4 149 19 24

i

j
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Selecting the coarse grid - Example
Algebraic Multigrid

Discretisation on 5x5 grid:

For example, Point 12:

( )7 11 12 13 172
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Selecting the coarse grid - Example
Algebraic Multigrid

1) Define a measure to each point of its potential quality as a coarse (C) 
point: amount of members of T

iSλi

2 233 3

3 344 4

3 344 4

3 344 4

2 233 3

0 105 15 20

1 116 16 21

2 127 17 22

3 138 18 23

4 149 19 24
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Selecting the coarse grid - Example
Algebraic Multigrid

2) Assign point with maximum to C-point
3) All points in     become fine (F) points
4) For each new F point j: increase the measeure for all each

unassigned point k that strongly influence j: 

5) Do 2)-4) until all points are assigned

λi

2 233 3

3 344 4

3 344 4

3 344 4

2 233 3

2 233 3

3 344 5

3 454 F

3 FF5 C

2 343 F

T
iS

λk

∈ jk S
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Selecting the coarse grid - Example
Algebraic Multigrid

2 233 3

3 344 5

3 454 F

3 FF5 C

2 343 F

2 343 F

3 FF5 C

3 564 F

3 FF5 C

2 343 F

C CCF F

F FFC C

C CCF F

F FFC C

C CCF F
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Definition of transfer operators
Algebraic Multigrid

• Interpolation: from coarse to fine grids

• Each fine grid point i can have three different types of neighboring
points:
The neighboring coarse grid points that strongly influence i
The neighboring fine grid points that strongly influence i
Points that do not strongly influence i, can be fine and coarse grid
points

� This information is contained in 

( ) ω
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Example
Algebraic Multigrid

• Example:

• Discretised with a two-dimensional mesh, divided into 4 parts;

xx yy xy-au -cu +bu =0

b=0b=0

c=1c=1

a=1000a=1

b=2b=0

c=1c=1

a=1a=1000
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Example
Algebraic Multigrid

Grid 2h

'X'

'Y
'

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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Example
Algebraic Multigrid

Grid 4h

'X'

'Y
'

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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Example
Algebraic Multigrid

Grid 8h

'X'

'Y
'

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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Advantages & Disadvantages of AMG
Algebraic Multigrid

Number of Iterations
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SIP (Iterations: 2410)
V-Cycle (3 Grid-Levels)
W-Cycle (3 Grid-Level)
FMG-Cycle (3 Grid-Levels)
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Advantages & Disadvantages of AMG
Algebraic Multigrid

Advantages
• Fast and robust
• Good for segregated solvers (SIMPLE)

Disadvantages

• The Galerkin Operation is a very expensive step

• Diffucult to parallelize

• High setup-phase

• High storage requirements

• Not for coupled solvers

� A cure are the aggregation based AMGs
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Aggregation based AMG
Algebraic Multigrid

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 12

18 19 20 21 22 23II

I
• cell 7 influences strongly cell 1
• cell 2 influences strongly cell 1
• build a new cell I from cell 1,2,7
• do the same to get the new cell II

•In the simplest case strongly connected coefficient are simply
summed up

•Example:
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Aggregation based AMG
Algebraic Multigrid

•To get the coefficients of the new coarse linear equation system sum
up

•AI,II=A7,13+A7,8+A2,8

•AI,II=A13,7+A8,7+A8,2

•AI,I=A1,1+A2,2+A7,7

•AII,II=A8,8+A9,9+A13,13+A14,14+A15,15+A18,18+A19,19+A20,20

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 12

18 19 20 21 22 23II

I
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Aggregation based AMG
Algebraic Multigrid

Advantages
• The Galerkin operation becomes a simple summation of coefficients
• The setup-phase becomes very fast
• The procedure is easy to parallelize
• Through giving maximum and minimum size of cells on coarser grids, one can

pre-estimate memory effort
• in a finite volume method, the coefficients are representing flux sizes from one

cell to another, through summation on keeps the conservativness of the
discretized system over all coarser levels

Disadvantages
• The convergence rate becomes small compared to original AMG, but in the

case of solution of the non-linear Navier-Stokes equation the reduction of the
residual within one outer iteration has not to be very tight, reducing of about
one to two orders of magnitude suffices

���� The Agglomeration AMG is ideally applicable to the coupl ed solution of 
Navier-Stokes Equation System
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Thank you!

Discussion


