

Multigrid Methods and their application in CFD

Michael Wurst TU München

Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential equations

They are among the fastest solution techniques known today

Outline

- 1. Typical design of CFD solvers
- 2. Methods for Solving Linear Systems of Equations
- 3. Geometric Multigrid
- 4. Algebraic Multigrid
- 5. Examples

Different CFD solvers

Typical design of CFD solver

 segregated, sequential solution of decoupled transport equations

- pressure correction equation: a tight tolerance for guaranteeing mass conservation
- \rightarrow Multigrid methods

Coupled Solution Algorithm

Typical design of CFD solver

- momentum equations and pressure correction equation are such discretized that one gets a big coupled block equation system
- this equation system becomes very large – fast solver necessary

→Multigrid methods

Coupled Solution Algorithm

Typical design of CFD solver

- Big coefficient matrix consisting of the momentum matrixes, the pressure correction matrix and coupling matrixes
- The solution vector contains velocity componentes and pressure

$$\begin{pmatrix} \underline{\underline{A}} & \underline{\underline{0}} & \underline{\underline{0}} & \underline{\underline{0}} & \underline{\underline{A}} \\ \underline{\underline{0}} & \underline{\underline{A}} & \underline{\underline{0}} & \underline{\underline{0}} & \underline{\underline{A}} \\ \underline{\underline{0}} & \underline{\underline{0}} & \underline{\underline{A}} \\ \underline{\underline{0}} & \underline{\underline{0}} & A_{ww} & \underline{\underline{A}} \\ \underline{\underline{A}} & \underline{\underline{A}} & \underline{\underline{A}} \\ \underline{\underline{A}} & \underline{\underline{A}} \\ \underline{\underline{A}} & \underline{\underline{A}} \\ \underline{\underline{A}} & \underline{\underline{A}} \\ \underline{A} \\ \underline{$$

Basic Definitions Methods for Solving Linear Systems of Equations

• Linear System of Equation:

$$A\boldsymbol{u} = \boldsymbol{f}$$
$$\sum a_{ij} u_j = f_i$$

A: sparse matrix of size n×n, symmetric, pos. diagonal elements, non-positive off diagonal elements (*M-Matrix*)

u: exact solution

v: approximation to the exact solution

• Two measures of *v* as an approximation to *u*:

(Absolute) error: $\mathbf{e} = \mathbf{u} - \mathbf{v}$ Residual: $\mathbf{r} = \mathbf{f} - A\mathbf{v}$

Measured by norms:

$$L_{\infty} - \text{norm}: \|\boldsymbol{e}\|_{\infty} = \max_{1 \le j \le n} |\boldsymbol{e}_j| \qquad L_2 - \text{norm}: \|\boldsymbol{e}\|_2 = \left\{\sum_{j=1}^n \boldsymbol{e}_j^2\right\}^{\frac{1}{2}}$$

Direct vs. Iterative Methods

Methods for Solving Linear Systems of Equations

- Direct methods
 - i.g. Gauss elimination / LU decomposition
 - solve the problem to the computational accuracy
 - high computational power

- Iterative methods / Relaxation methods
 - Gauss-Seidel / Jacobi relaxation
 - Solve the problem only by an approximation
 - could be sufficient and so be less time consuming

Iterative methods Methods for Solving Linear Systems of Equations

$$\sum a_{ij}u_j = f_i$$

• Jacobi relaxation:

$$U_{i}^{(n+1)} = \frac{1}{a_{ii}} \left(f_{i} - \sum_{j \neq i} a_{ij} U_{j}^{(n)} \right)$$

• Gauss-Seidel relaxation:

$$u_{i}^{(n+1)} = \frac{1}{a_{ii}} \left(f_{i} - \sum_{j < i} a_{ij} u_{j}^{(n+1)} - \sum_{j > i} a_{ij} u_{j}^{(n)} \right)$$

Methods for Solving Linear Systems of Equations

• Example: Poisson equation

$$-u'' = 0$$
$$u(0) = u(n) = 0$$

• Discretisation:

$$\frac{-u_{j-1} + 2u_j - u_{j+1}}{h^2} = 0$$

$$-u_{j-1} + 2u_j - u_{j+1} = 0 \qquad 1 \le j \le n+1$$

$$u_0 = u_n = 0$$

• Exact solution:

$$\boldsymbol{u} = 0$$

error $\boldsymbol{e} = \boldsymbol{u} - \boldsymbol{v} = -\boldsymbol{v}$

Methods for Solving Linear Systems of Equations

• Different starting values:

FIN

Methods for Solving Linear Systems of Equations

• Error vs. Number of iteration

Methods for Solving Linear Systems of Equations

• Realistic starting value:
$$v_j = \frac{1}{3} \left[sin\left(\frac{j\Pi}{n}\right) + sin\left(\frac{6j\Pi}{n}\right) + sin\left(\frac{32j\Pi}{n}\right) \right]$$

Methods for Solving Linear Systems of Equations

• Error: written in eigenvectors of A:

$$\mathbf{e}^{(0)} = \sum_{k=1}^{n-1} \boldsymbol{C}_k \boldsymbol{W}_k$$

• Eigenvectors correspond to the modes of the problem

Our problem:

$$w_{k,j} = \sin\left(\frac{jk\Pi}{n}\right) \qquad 1 \le k \le n-1$$

$$1 \le k \le \frac{n}{2} \qquad \qquad \frac{n}{2} \le k \le n-1$$

Low frequency modes "Do not dissappear" *High frequency modes* "Disappear"

Smoother

Improvements of iterative solvers

Geometric Multigrid

- Idea: Have a good initial guess
 - →How? Do some preliminary iterations on a coarse grid (grid with less points)
 Coad because iterations need less computational time

Good, because iterations need less computational time

How does an error look like on a coarse grid?
 It looks more oscillatory!

Improvements of iterative solvers

Geometric Multigrid

How does an error look like on a coarse grid?

 \rightarrow If error is smooth on fine grid, maybe good to move to coarse grid.

Possible schemes for improvement

Geometric Multigrid

• Nested iteration:

Relax on A*u* = *f* on a very coarse grid
 to obtain an initial guess for the next finer grid

- Relax on $A \boldsymbol{u} = \boldsymbol{f}$ on Ω^{4h} to obtain an initial guess for Ω^{2h}
- Relax on $A \boldsymbol{u} = \boldsymbol{f}$ on Ω^{2h} to obtain an initial guess for Ω^{h}
- Relax on $A\mathbf{u} = \mathbf{f}$ on Ω^h to obtain a final approximation to the solution.
- Problems: Relax on Au = f on Ω^{2h} ? Last iteration: Error still smooth?

• 2nd possibility: Use of the residual equation

A**u** = **f**

$$A\boldsymbol{u} - A\boldsymbol{v} = \boldsymbol{f} - A\boldsymbol{v}$$

A**e** = **r**

Possible schemes for improvement

Geometric Multigrid

- Correction scheme:
 - Relax on $A \boldsymbol{u} = \boldsymbol{f}$ on Ω^h to obtain an approximation \boldsymbol{v}^h
 - Compute the residual $r = f A v^h$

Relax on the residual equation $A e = r \text{ on } \Omega^{2h}$ to obtain an approximation to the error e^{2h}

- Correct the approximation obtained on Ω^h with the error estimate obtained on Ω^{2h} : $\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{e}^{2h}$
- Problems: Relax on Ae = r on Ω^{2h} ? Transfer from Ω^{2h} to Ω^{h} ?

• Transfer from coarse to fine grids: Interpolation / Prolongation

 $\Omega^{2h}\to\Omega^h$

• Transfer from fine to coarse grids: Restriction

 $\Omega^h o \Omega^{2h}$

Transfer operators – Interpolation / Prolongation

Geometric Multigrid

• Interpolation / Prolongation: from coarse to fine grid

- Points on fine and on coarse grid:
- $V_{2j}^h = V_j^{2h}$
- Points only on the fine grid: $V_{2j+1}^h = \frac{1}{2}(V_j^{2h} + V_{j+1}^{2h})$

Transfer operators – Restriction

Geometric Multigrid

• Restriction: from fine to coarse grid

• Full weightening: $V_j^{2h} = \frac{1}{4} \left(v_{2j-1}^h + 2v_{2j}^h + v_{2j+1}^h \right)$

Properties of transfer operators

Geometric Multigrid

Variational property: $I_{2h}^h = c (I_h^{2h})^T$

Properties of transfer operators

Geometric Multigrid

- Transfer of vectors: ✓
- Transfer of matrix $A: A^h \to A^{2h}$
 - Geometric answer: A^{2h} is discretisation of the problem on the coarse grid
 - Algebraic answer: $A^{2h} = I_h^{2h} A^h I_{2h}^h$ (Galerkin condition)

- Iterative methods can effectively reduce high-oscillating errors until only a smooth error remains
- Smooth errors look less smooth on coarse grids
- Transfer of vectors and matrices from coarse to fine grids possible with two conditions:

Galerkin condition $A^{2h} = I_h^{2h} A^h I_{2h}^h$

Variational property $I_{2h}^{h} = c (I_{h}^{2h})^{T}$

How can we put this in a good solution algorithm?

V-Cycle Geometric Multigrid

- Relax on $A^h u^h = f^h v_1$ times with initial guess v^h
- Compute $\boldsymbol{f}^{2h} = \boldsymbol{I}_{h}^{2h} \boldsymbol{r}^{h}$
 - Relax on $A^{2h}u^{2h} = f^{2h}V_1$ times with initial guess v^{2h}
 - Compute $\boldsymbol{f}^{4h} = \boldsymbol{I}_{2h}^{4h} \boldsymbol{r}^{2h}$
 - Relax on $A^{4h}\boldsymbol{u}^{4h} = \boldsymbol{f}^{4h}\boldsymbol{v}_1$ times with initial guess \boldsymbol{v}^{4h}

• Compute
$$\mathbf{f}^{8h} = \mathbf{I}_{4h}^{8h} \mathbf{r}^{4h}$$

. . .

. . .

• Solve
$$A^{Lh}u^{Lh} = f^{Lh}$$

• Correct
$$\mathbf{v}^{4h} \leftarrow \mathbf{v}^{4h} + \mathbf{I}^{4h}_{8h} \mathbf{v}^{8h}$$

- Relax $A^{4h}\boldsymbol{u}^{4h} = \boldsymbol{f}^{4h} v_2$ times with initial guess \boldsymbol{v}^{4h}
- Correct $\mathbf{v}^{2h} \leftarrow \mathbf{v}^{2h} + \mathbf{I}_{4h}^{2h} \mathbf{v}^{4h}$
- Relax $A^{2h}u^{2h} = f^{2h} V_2$ times with initial guess v^{2h}
- Correct $\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{I}_{2h}^h \mathbf{v}^{2h}$
- Relax $A^h u^h = f^h v_2$ times with initial guess v^h

Other cycles – W Cycle Geometric Multigrid

Other cycles – Full Multigrid Cycle (FMG) Geometric Multigrid

Geometric vs. Algebraic multigrid

Algebraic Multigrid

- Geometric Multigrid: structured meshes
- Problem: unstructured meshes, no mesh at all
- → Algebraic Multigrid (AMG) Questions:
 - 1) What is meant by grid now?
 - 2) How to define coarse grids?
 - 3) Can we use the same smoothers (Jacobi, Gauss-Seidel)
 - 4) When is an error on a grid smooth?
 - 5) How can we transfer data from fine grids to coarse grids or vice versa?

- GMG: known locations of grid points
 well-defined subset of the grid points define coarse grid
- AMG: subset of solution variables form coarse grid

 $A \boldsymbol{u} = \boldsymbol{f}$

$$\boldsymbol{u} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_n \end{bmatrix}$$

- Defined as an error which is not effectively reduced by an iterative method
- Jacobi method: $e^{i+1} = (I D^{-1}A)e^{i}$
- Measurement of the error with the A-inner product: $\|\boldsymbol{e}\|_{A} = (A\boldsymbol{e}, \boldsymbol{e})^{1/2}$

• Smooth error:
$$\left\| (I - D^{-1}A)\mathbf{e} \right\|_{A} \approx \left\| \mathbf{e} \right\|_{A}$$

 $\left\| \mathbf{e} - D^{-1}A\mathbf{e} \right\|_{A} \approx \left\| \mathbf{e} \right\|_{A}$
 $\rightarrow \left\| D^{-1}A\mathbf{e} \right\|_{A} \quad \left\| \mathbf{e} \right\|_{A}$

Smooth error:

$$\|D^{-1}Ae\|_{A} \|e\|_{A}$$
$$(D^{-1}Ae, Ae) \quad (e, Ae)$$
$$(D^{-1}r, r) \quad (e, r)$$
$$\sum_{i=1}^{n} \frac{r_{i}^{2}}{a_{ii}} \quad \sum_{i=1}^{n} r_{i}e_{i}$$
$$\rightarrow |r_{i}| \quad a_{ii}|e_{i}|$$
$$Ae \approx 0$$

Implications of smooth error Algebraic Multigrid

Ae ≈ 0

$$a_{ii}e_i + \sum_{j \neq i} a_{ij}e_j \approx 0$$

 $a_{ii}e_i \approx -\sum_{j \neq i} a_{ij}e_j$

Selecting the coarse grid - requirements

Algebraic Multigrid

- Smooth error can be approximated accurately.
- Good interpolation to the fine grid.
- Should have substantially fewer points, so the problem on coarse grid can be solved with little expense.

Selecting the coarse grid – Influence and Dependence Algebraic Multigrid

Definition 1: •

> Given a threshold value $0 < \theta \le 1$, the variable (point) u_i strongly depends on the variable (point) u_i if:

$$-a_{ij} \geq \theta \max_{k \neq i} \{-a_{ik}\}$$

Definition 2: •

> If the variable u_i strongly depends on the variable u_i , then the variable u_i strongly influences the variable u_i .

Selecting the coarse grid – definitions

Algebraic Multigrid

• Two important sets:

 S_i : set of points that strongly influence i, that is the points on which the point i strongly depends.

$$S_{i} = \left\{ j : -a_{ij} \geq \theta \max_{k \neq i} \left\{ -a_{ik} \right\} \right\}$$

 S_i^{T} : set of points that strongly depend on the point i.

$$\mathbf{S}_i^{\mathsf{T}} = \left\{ j : i \in \mathbf{S}_j \right\}$$

Selecting the coarse grid - Example

Algebraic Multigrid

• Poisson equation: $-\Delta u = 0$

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} + \frac{-u_{j-1} + 2u_i - u_{j+1}}{h^2} = 0$$
$$\frac{1}{h^2} \left(-u_{i-1} - u_{i+1} + 4u_i - u_{j-1} - u_{j+1} \right) = 0$$

Selecting the coarse grid - Example

Algebraic Multigrid

Discretisation on 5x5 grid:

For example, Point 12:

1

$$\frac{1}{h^2}(-u_7 - u_{11} + 4u_{12} - u_{13} - u_{17}) = 0$$

$$\begin{aligned} a_{12,7} &= -1 & (0)^{-15} + (10)^{-15} + (2)^{-10} \\ a_{12,11} &= -1 & S_i = \left\{ j : -a_{ij} \ge \theta \max_{k \ne i} \left\{ -a_{ik} \right\} \right\} & S_{12} = \left\{ 7, 11, 13, 17 \right\} \\ a_{12,17} &= -1 & S_i^T = \left\{ j : i \in S_j \right\} & S_{12}^T = \left\{ 7, 11, 13, 17 \right\} \end{aligned}$$

Selecting the coarse grid - Example Algebraic Multigrid

1) Define a measure to each point of its potential quality as a coarse (C) point: amount λ_i of members of S_i^T

Selecting the coarse grid - Example

Algebraic Multigrid

- 2) Assign point with maximum λ_i to C-point
- 3) All points in S_i^T become fine (F) points
- 4) For each new F point j: increase the measeure λ_k for all each unassigned point k that strongly influence j: $k \in S_i$

5) Do 2)-4) until all points are assigned

Selecting the coarse grid - Example

Algebraic Multigrid

• Interpolation: from coarse to fine grids

$$\left(I_{2h}^{h}\mathbf{e}\right)_{i} = \begin{cases} \mathbf{e}_{i} & \text{if } i \in \mathbf{C} \\ \sum_{j \in C_{i}} \omega_{ij}\mathbf{e}_{j} & \text{if } i \in \mathbf{F} \end{cases}$$

• Each fine grid point i can have three different types of neighboring points:

The neighboring coarse grid points that strongly influence i The neighboring fine grid points that strongly influence i Points that do not strongly influence i, can be fine and coarse grid points

 \rightarrow This information is contained in ω_{ij}

• Example:

 $-au_{xx} - cu_{yy} + bu_{xy} = 0$

• Discretised with a two-dimensional mesh, divided into 4 parts;

a=1000	a=1
c=1	c=1
b=0	b=2
a=1	a=1000
c=1	c=1
b=0	b=0

Grid 2h

Grid 4h

Grid 8h

Advantages & Disadvantages of AMG

Algebraic Multigrid

Advantages & Disadvantages of AMG

Algebraic Multigrid

Advantages

- Fast and robust
- Good for segregated solvers (SIMPLE)

Disadvantages

- The Galerkin Operation is a very expensive step
- Diffucult to parallelize
- High setup-phase
- High storage requirements
- Not for coupled solvers

\rightarrow A cure are the **aggregation based AMGs**

Aggregation based AMG

Algebraic Multigrid

•In the simplest case strongly connected coefficient are simply summed up

•Example:

_						
П _	18	19	20	21	22	23
	13	14	15	16	17	12
	7	8	9	10	11	12
I –	1	2	3	4	5	6

- cell 7 influences strongly cell 1
- cell 2 influences strongly cell 1
- build a new cell | from cell 1,2,7
- do the same to get the new cell II

Aggregation based AMG

Algebraic Multigrid

_						
п _	18	19	20	21	22	23
	13	14	15	16	17	12
	7	8	9	10	11	12
I –	1	2	3	4	5	6

•To get the coefficients of the new coarse linear equation system sum up

Aggregation based AMG

Algebraic Multigrid

Advantages

- The Galerkin operation becomes a simple summation of coefficients
- The setup-phase becomes very fast
- The procedure is easy to parallelize
- Through giving maximum and minimum size of cells on coarser grids, one can pre-estimate memory effort
- in a finite volume method, the coefficients are representing flux sizes from one cell to another, through summation on keeps the conservativness of the discretized system over all coarser levels

Disadvantages

• The convergence rate becomes small compared to original AMG, but in the case of solution of the non-linear Navier-Stokes equation the reduction of the residual within one outer iteration has not to be very tight, reducing of about one to two orders of magnitude suffices

→ The Agglomeration AMG is ideally applicable to the coupled solution of Navier-Stokes Equation System

Thank you!

Discussion