

Correction and Preprocessing Methods

Veselin Dikov

1. Beam hardening Tube spectrum After 20cm water After 30cm water 1.1. The phenomena Relative Intensity Photon ratio by monochromatic beam $N_d = N_{in} \exp\left[-\int_{ray} \mu(x, y) ds\right]$ $\Rightarrow \int_{ray} \mu(x, y) ds = \ln \frac{N_{in}}{N_{in}}$ for homogenous medium $\Rightarrow \mu l = \ln \frac{N_{in}}{N_{in}}$ Photon ratio by polychromatic beam $N_{d} = \int S_{in}(E) \exp \left| -\int_{ray} \mu(x, y, E) ds \right| dE$ (1)1.2. Beam hardening artefact cupping streaks Winner and the state

1.3. Correction schemes

Preprocessing

- Assumption for homogeneous medium
- Correction of projection data

Postprocessing

Iterative scheme:

- first: preprocessing step
- second: threshold to identify hard structures
- third: forward-project the contribution of the hard structures into projection data

n(Nu)

Thickness of a nogeneous absort

Dual-energy

Substitute
$$\mu(x, y, E) = a_1(x, y)g(E) + a_2(x, y)f_{KN}(E)$$
 in (1)

$$\Rightarrow N_d = \int S_{in}(E) \exp\left[-(A_1g(E) + A_2f_{KN}(E))\right] dE$$
where $A_i = \int_{ray} a_i(x, y) ds$, for $i = 1, 2$
(2)
Two scans with different voltage (different energy curves)
 $I_1(A_1, A_2) = \int S_1(E) \exp\left[-(A_1g(E) + A_2f_{KN}(E))\right] dE$
 $I_2(A_1, A_2) = \int S_2(E) \exp\left[-(A_1g(E) + A_2f_{KN}(E))\right] dE$
Percentruct $a_i(x, y)$ and $a_i(x, y) = \sum_{i=1}^{n} \exp\left[-(A_{ii}g(E) + A_{ii}f_{kii}(E))\right] dE$

Reconstruct $a_1(x, y)$ and $a_2(x, y) \implies \text{now } \mu(x, y, E)$ can be reconstructed for any energy

2. Scattered radiation

Scattered radiation is a radiation that is deflected in the scanned medium.

0.5

1

Bone Thickness / cm

1.5

2

dependence

Loss of sharpness

Transmitted radiation:

 $I_t = I_p + I_{sr}$, where $I_{sr} = SPR \cdot I_p * *h_{sr}$

 h_{sr} - blurring kernel due to scattered radiation

****** - 2D convolution¹

Detected radiation:

 $I_{d} = (1 - \rho)I_{t} + \rho I_{t} * *h_{vg} \Rightarrow$ $I_{d} = (1 - \rho)(I_{p} + SPR \cdot I_{p} * *h_{sr}) + \rho(I_{p} + SPR \cdot I_{p} * *h_{sr}) * *h_{vg}$ $h_{vg} \text{ - blurring kernel due to veiling glare}$ $\rho \text{ - fraction of veiling}$

2.3. Scatter Reduction Approaches

- Anti-scatter grid
- Air gaps
- Beam collimation

2.4. Scatter Measurement

- Opaque discs techniques
- Aperture techniques
- Hybrid techniques

2.5. Scatter Correction Schemes

Convolution filtering

Filter the smooth scatter signal from the image

$$I_{d} = I_{p} + I_{s} = I_{p} + SPR \cdot I_{p} * *h_{s}$$
$$\implies I_{p} = I_{d} - SPR \cdot I_{p} * *h_{s}$$

Use I_d as an estimation for I_p , W- ratio of scatter signal to the total signal

$$I_p = I_d - W(I_d * *h_s)$$

Low-pass filtered version of the
detected signal. Has to be filtered out

¹ 2D convolution - $(g * *h)(x, y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} g(u, v)h(x-u, y-v)dudv$

Scatter sampling schemes

- Estimate scatter in sample points
 - Opaque disc arrays
 - Aperture arrays
- Interpolate "scatter surface" (it is a smooth one)
 - o 2D least squares fitting
 - o Filtration with sinc and jinc
 - o 2D polynomial fitting
 - o 2D bicubic splines
- Subtract the "scatter surface" estimation from the image

3. Ring artefacts

Artefacts in the reconstructed image due to defect detector units; relevant for thirds generation CT; only postprocessing correction possible.

- 1. Select Region of Interest (ROI). No data out of it is considered
- 2. Translate image to polar coordinates
- 3. Construct artefact pattern by doing search in window (red window on the image in right)
- 4. Subtract the pattern from the image
- 5. Translate image back to Cartesian coordinages

ROI

Search window

4. References

- T.Buzug, Einfürung in die Computertomographie, Springer-Verlag (2004)
- A.Kak and M.Slaney, Principles of Computerized Tomographic Imaging, IEEE Press (1988)
- K.P.Maher and J.F. Malone, Computerized scatter correction in diagnostic radiology, Contemporary Physics 38, 131-148 (1997).
- J.Sijbers and A.Postnov, Reduction of ring artefacts in high resolution micro-CT reconstructions, Physics in Medicine and Biology Vol. 49 (07/2004)
- M.Zellerhoff et al, Low contrast 3D-reconstruction from C-arm data, Medical Imaging SPIE, 646-655 (04/2004)