
Full System Simulator
SDK includes simulator preconfigured for Cell.
Usage:

- can be started running Linux as OS from the Linux run directory or without OS from
the standalone directory

- can be started with GUI (../run_gui) or with command line only (../run_cmdline)

Files can be sent to the simulator using:

callthru source <fileOnRealSystem> > <fileOnSimulator>.
These files are not stored permanently. By

mount -o loop sysroot_disk /mnt
the files can be copied into the simulated environment permanently. Must be unmounted
before running the simulator.

GDB – The GNU Project Debugger
Modified version of the GDB source-level debugger
Usage:

- add “CFLAGS= -g” to the makefile
- copy source and binary to the simulator
- gdb <ppu-binary>, for PPU-code and spu-gdb <spu-binary> fur SPU-code
- gdb --tui <binary> for window view

Important Commands
b source.c:57 if i=5 Break execution at a particular source code location (under condition)
info {command} Information about…
d {breakpoint} Delete a breakpoint
r Run the debugged program.
n Step to next statement and over routine calls
s Step to next statement and into called functions.
c Continue program until next breakpoint
finish Step until end of current function
until {location} Step until location
p {expression} Print variable or content of a memory address
ba Backtrace / Display stack
x {address} Examine data at address
l Show surrounding source code

OProfile
A statistical, kernel-based, profiler that is not yet available for Cell.
Usage:

- Point OProfile to the vmlinux file corresponding to the running kernel: opcontrol --
vmlinux=/boot/vmlinux

- Start the daemon with opcontrol --start
- Use opreport the get summaries of data. opreport -l <binary> provides only data

regarding the given program
- opannotate --source <binary> produces annotated source if binary was built with -g

Static timing analysis
SPU-gcc_timing is part of the SDK.
Usage:

- make <spu-source.s>
- spu-gcc_timing <spu_source.s>
- the annotated machine code can be found in <spu_source.s.timing>

The timing-file can be interpreted as follows:
0/1 indicates the pipeline that issued an instruction
D/d/ “D” signifies a successful dual-issue, “d” signifies a dual-issue did not occur due to

dependencies and no entry signifies that issue rules were not satisfied
0-9 Each number represents one clock cycle that was taken for the instruction

- Represents a dependency stall

Dynamic timing analysis
This is part of the simulator.
Usage:

- SPU must be set to pipeline mode in order to collect performance data
- Performance statistics fear each SPE can be accessed from the simulator under

SPUStats
- To start, stop and reset the performance counter from the SPU-program

#include <profile.h> and use prof_start(), prof_stop() and prof_clear()
Important indicators include cycles per instruction, single cycles, dual cycles, stalls due to
branch miss and due to dependency and register use.

