

 Moscow-Bavarian Joint Advanced Student School

19-29 March 2006, Moscow, Russia

 1 of 4

Introduction to CBEA SDK
Veselin Dikov

1. Getting started

Executable format check utility:
file <executable>

Makefile headers (reside in SDK root directory)
 make.header

make.footer
make.env

Makefile examples

Makefile - spu

Target
PROGRAMS_spu := simple_spu

created embedded library
LIBRARY_embed:= lib_simple_spu.a

Local Defines
###############################
IMPORTS = $(SDKLIB_spu)/libc.a

make.footer
################################
include ../../make.footer

make.footer is in the top of
the SDK

Makefile - ppu

Subdirecto
DIRS := spu

ries ###############

Target
PROGRAM_ppu:= simple

###########

Local Defines ################

IMPORTS := spu/lib_simple_spu.a \
 -lspe
imports the embedded simple_spu
library allows consolidation of
spu program into ppe binary

make.footer ##################
include ../make.footer

make.footer is in the top of
the SDK

2. SPU Language Extensions
The architecture’s extended instruction set is supported by the SPU Language extensions.
2.1. SIMD vectorization – vector data type
128 bit data structure. CBEA architecture has extended instruction set that operates on vector.
Example:

vector unsigned int vec = (vector unsigned int)(1,2,3,4);
vector unsigned int v_ones = (vector unsigned int)(1);
vector unsigned int vdest = spu_add(vec, v_ones);

 Moscow-Bavarian Joint Advanced Student School

19-29 March 2006, Moscow, Russia

 2 of 4

2.2. Memory Flow Control (MFC)
SPE units fetch data from main storage true DMA channels
Example:
 mfc_get(&data,addr+16384*i,16384,20,0,0);

3. SPE library
Provides PPE functionality; two sets of functions – thread management and MFC access
functions

Header: <libspe.h>

3.1. Thread management
Functions for creating and managing thread groups and threads, functions for accessing SPE
thread attributes and communicating with the thread.

3.2. MFC mailboxes
Function for exchanging of messages and signals between PPE and SPE threads through
DMA channels.

4. SDK libraries
Library name Short Description PPE SPE
C Library standard C99 functionality. POSIX.1 functions. x x
Audio Resample
Library

audio resampling functionality for PPE and SPE x x

Curves and
Surfaces Library

quadratic and cubic Bezier curves. Biquadric and bicubic Bezier
surfaces, and curved point-normal triangles.

x x

FFT Library 1-D FFT and kernel functions for 2-D FFT x x
Game Math Library math routines applicable to game performance needs x x

Image Library routines for processing images - convolutions and histograms x x

Large Matrix Library basic linear algebra routines on large vectors and matrices x

EA address
LS address

 Moscow-Bavarian Joint Advanced Student School

19-29 March 2006, Moscow, Russia

 3 of 4

Math Library general purpose math routines tuned to exploit SIMD x x

Matrix Library routines for operations on 4x4 Matrices and quaternions x x

Misc Library set of general purpose routines that don’t logically fit within any
other

x x

Multi-Precision
Math Library

operations on unsigned integer numbers with large number of bits x

Noise LibraryPPE 1-,2-, 3-, 4-D noise, Lattice and non-lattice noise, Turbulance x x

Oscillator Libraries definition of sound sources x x
Simulation Library functionality related to the Full-Simulator - -
Sync Library synchronization primitives, like atomic operations, mutex x x

Vector Library a set of general purpose routines that operate on vectors. x x

5. Remote Procedure Calls (RPC)
Communication between PPE and SPE threads via function stubs

Enables the implementation of Function-Offload Model, where:

• SPE threads work as services – provide some functionality via IDL interfaces

• PPE communicates with them thought RPC calls

Interface Description Language (IDL) is an industry standard for definition of RPC interfaces:

idl files
interface add

{

 import "../stub.h";

 const int ARRAY_SIZE = 1000;

[sync] idl_id_t do_inv ([in] int array_size,

 [in, size_is(array_size)] int array_a[],

[out, size_is(array_size)] int array_res[]);

…

}

 Moscow-Bavarian Joint Advanced Student School

19-29 March 2006, Moscow, Russia

 4 of 4

idl compiler
idl -p ppe_sample.c -s spe_sample.c sample.idl

IDL “mechanism”:

6. References
• CBEA-Tutorial.pdf, SDK documentation

• idl.pdf, SDK documentation

• libraries_SDK.pdf, SDK Documentation

• libspe_v1.0.pdf, SDK Documentation

• SPU_language_extensions_v21.pdf, Sony online resources

http://cell.scei.co.jp/pdf/SPU_language_extensions_v21.pdf, 15.03.2006

http://cell.scei.co.jp/pdf/SPU_language_extensions_v21.pdf

	1. Getting started
	2. SPU Language Extensions
	2.1. SIMD vectorization – vector data type
	2.2. Memory Flow Control (MFC)

	3. SPE library
	3.1. Thread management
	3.2. MFC mailboxes

	4. SDK libraries
	5. Remote Procedure Calls (RPC)
	6. References

