2D Fan Beam Reconstruction 3D Cone Beam Reconstruction

Mario Koerner

Overview

- 2D Fan Beam Reconstruction
- Shortscan Reconstruction
-3D Cone Beam Reconstruction

Parallel vs. Fan-beam

Measured projections:

$$
P_{\theta}(t)
$$

(R is measured at equiangular intervals)

FBP for parallel projections

$$
\begin{aligned}
& f(x, y)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-t_{m}}^{t_{m}} P_{\theta}(t) h(x \cos \theta+y \sin \theta-t) d t d \theta \\
& f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-t_{m}}^{t_{m}} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta
\end{aligned}
$$

Polar coordinates:
$x=r \cos \phi$
$y=r \sin \phi$

Transformation to Fan-beam geom.

Where can we find the data for this projection ray in the fan beam projection data?

Transformation to Fan-beam geom.

Transformation between θ, t and β, γ can be described by

$$
\begin{aligned}
& \theta=\beta+\gamma \\
& t=D \sin \gamma
\end{aligned}
$$

Transformation of the FBP integral

$$
\left.\begin{array}{rl}
f(r, \phi) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{-t_{m}}^{t_{m}} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta
\end{array} \begin{array}{rl}
\theta & =\beta+\gamma \\
t & =D \sin \gamma \\
d t d \theta & =D \cos \gamma d \gamma d \beta
\end{array}\right]
$$

Transformation of the FBP integral

$$
\left.\begin{array}{rl}
f(r, \phi) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{-t_{m}}^{t_{m}} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta
\end{array} \begin{array}{rl}
\theta & =\beta+\gamma \\
t & =D \sin \gamma \\
d t d \theta & =D \cos \gamma d \gamma d \beta
\end{array}\right]
$$

Further simplification can be applied to the argument of the function h.

Transformation of the FBP integral

Consider a point C in polar coordinates

Transformation of the FBP integral

$h(L \sin \gamma)$ can be expressed in terms of $h(\gamma)$:

$$
\begin{aligned}
h(t) & =\int_{-\infty}^{\infty}|\omega| \exp (2 \pi i \omega t) d \omega \\
h(L \sin \gamma) & =\int_{-\infty}^{\infty}|\omega| \exp (2 \pi i \omega L \sin \gamma) d \omega \\
& =\left(\frac{\gamma}{L \sin \gamma}\right)^{2} \int_{-\infty}^{\infty}\left|\omega^{\prime}\right| \exp \left(2 \pi i \omega^{\prime} \gamma\right) d \omega \\
& =\left(\frac{\gamma}{L \sin \gamma}\right)^{2} h(\gamma)=\frac{2}{L^{2}} \frac{1}{2}\left(\frac{\gamma}{\sin \gamma}\right)^{2} h(\gamma) \\
& =: \frac{2}{L^{2}} g(\gamma)
\end{aligned}
$$

Putting things together

$$
\begin{aligned}
& f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\gamma_{\mu}}^{\gamma_{\pi}} R_{\beta}(\gamma) h(r \cos (\beta+\gamma-\phi)-D \sin \gamma) D \cos \gamma d \gamma d \beta \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{-\gamma_{1}}^{\gamma_{m}} R_{\beta}(\gamma) h\left(L \sin \left(\gamma^{\prime}-\gamma\right)\right) D \cos \gamma d \gamma d \beta \\
& =\int_{0}^{2 \pi} \frac{1}{L^{2}} \int_{-\gamma_{m}}^{\gamma_{\pi}} R_{\beta}(\gamma) g\left(\gamma^{\prime}-\gamma\right) D \cos \gamma d \gamma d \beta \quad R_{\beta}^{\prime}(\gamma):=R_{\beta}(\gamma) D \cos \gamma \\
& =\int_{0}^{2 \pi} \frac{1}{L^{2}} \int_{-\gamma_{n}}^{\gamma_{n}} R_{\beta}^{\prime}(\gamma) g\left(\gamma^{\prime}-\gamma\right) d \gamma d \beta \quad \quad Q_{\beta}(\gamma):=R_{\beta}^{\prime}(\gamma) * g(\gamma) \\
& =\int_{0}^{2 \pi} \frac{1}{L^{2}} Q_{\beta}\left(\gamma^{\prime}\right) d \beta
\end{aligned}
$$

The algorithm

$$
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{L^{2}} \int_{-\gamma_{m}}^{\gamma_{m}} R_{\beta}(\gamma) D \cos \gamma g\left(\gamma^{\prime}-\gamma\right) d \gamma d \beta
$$

Step 1: Preprocess each projection using $\quad R_{\beta}^{\prime}(\gamma):=R_{\beta}(\gamma) D \cos \gamma$
Step 2: Convolve each projection with the impulse response

$$
g(\gamma)=\frac{1}{2}\left(\frac{\gamma}{\sin \gamma}\right)^{2} h(\gamma)
$$

Step 3: Perform a weighted backprojection of each filtered projection along the fan,
Where L is the distance of a given point (r, Φ) from the source:

$$
L(r, \phi, \beta)=\sqrt{[D+r \sin (\beta-\phi)]^{2}+[r \cos (\beta-\phi)]^{2}}
$$

And γ^{\prime} can be computed according to

$$
\gamma^{\prime}=\tan ^{-1}(r \cos (\beta-\phi) /(D+r \sin (\beta-\phi)))
$$

Equally spaced collinear detector

So far: we used projection rays on equiangular intervals
Now: use equally spaced projections on a (virtual) collinear detector

Transformation between fan-beam data and parallel data:

$$
\begin{aligned}
& \theta=\beta+\gamma \\
& t=s \cos \gamma=\frac{s D}{\sqrt{D^{2}+s^{2}}}
\end{aligned}
$$

(from [Kak])

Equally spaced collinear detector

Similar to the equiangular case, we can transform the parallel FBP to β, s

... and end up with the FBP formula for the collinear detector:

$$
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-\infty}^{\infty} R_{\beta}(s) \frac{D}{\sqrt{D^{2}+s^{2}}} \frac{h\left(s^{\prime}-s\right)}{2} d s d \beta
$$

Equally spaced collinear detector

$$
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-\infty}^{\infty} R_{\beta}(s) \frac{D}{\sqrt{D^{2}+s^{2}}} \frac{h\left(s^{\prime}-s\right)}{2} d s d \beta
$$

Where s' is the backprojected coordinate of (r, Φ) in Projection β

$$
s^{\prime}=\frac{\overline{E P}}{\overline{S P}} \overline{S O}=D \frac{r \cos (\beta-\phi)}{D+r \sin (\beta-\phi)}
$$

And U is the ratio

$$
U(r, \phi, \beta)=\frac{\overline{S O}+\overline{O P}}{D}=\frac{D+r \sin (\beta-\phi)}{D}
$$

of the projection onto the central ray.

Overview

- 2D Fan Beam Reconstruction
- Shortscan Reconstruction
-3D Cone Beam Reconstruction

Parallel beam shortscan

For the case of parallel projections, it is easy to see that a scan over an angle of 180° is sufficient, because projections that are 180° apart, are mirror images of each other:

$$
P_{\theta}(t)=P_{\theta+180^{\circ}}(-t)
$$

Fan-beam shortscan

Consider a Fan-beam scan over 180° :

Question: is the collected data sufficient for reconstruction?

Fan-beam shortscan

Consider a Fan-beam scan over 180° :

No!
Some projection rays are missing in the measured data, other rays are measured twice, what leads to redundancy in the data set.

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Unfortunately, this adds even more redundancy to our measurement.

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of $180^{\circ}+2 \gamma_{m}$

Sinogram

The sinogram shows the value of the line integral for a specific β, γ

β	redundant range for γ
0	$-\gamma_{m} \leq \gamma \leq \gamma_{m}$
γ_{m}	$-\frac{1}{2} \gamma_{m} \leq \gamma \leq \gamma_{m}$
$2 \gamma_{m}$	$0 \leq \gamma \leq \gamma_{m}$
$3 \gamma_{m}$	$\frac{1}{2} \gamma_{m} \leq \gamma \leq \gamma_{m}$
$4 \gamma_{m}$	$\gamma=\gamma_{m}$

The green area shows the data that is measured twice

Handling redundancy

$1^{\text {st }}$ try: use a binary window function to hide redundant data

$$
w_{\beta}(\gamma)=\left\{\begin{array}{cc}
0 & 0 \leq \beta \leq 2 \gamma_{m}+2 \gamma \\
1 & \text { elsewhere }
\end{array}\right\}
$$

This window function is not usable, because the sharp edge introduces high frequencies, that causes strong artifacts during the filtering process:

Full scan

(from [Tur])

Short scan with binary window

Handling redundancy

$2^{\text {nd }}$ try: use a smooth window function to hide redundant data: „Parker weighting"

Handling redundancy

$2^{\text {nd }}$ try: use a smooth window function to hide redundant data: „Parker weighting"

Parallel rebinning

Reconstruction from Fan-beam geometry can also be done by re-sorting the fan-beam data into a parallel dataset:

$$
P_{\theta}(t)=R_{\theta-\sin ^{-1} \frac{t}{D}}\left(\sin ^{-1} \frac{t}{D}\right)
$$

using

$$
\begin{aligned}
\theta & =\beta+\gamma \\
t & =D \sin \gamma
\end{aligned}
$$

and applying the FBP for the parallel case to this dataset.

Problem: for discrete functions P and R this requires interpolation

Overview

- 2D Fan Beam Reconstruction
- Shortscan Reconstruction
- 3D Cone Beam Reconstruction

3D Reconstruction

A 3D object can be reconstructed using 2D methods by scanning it slice by slice:

- Requires a complex mechanical system
-The scan is very time-consuming, because the X-Ray source or the object has to be moved in every step
- The X-Ray dose is not used optimally

3D Cone Beam Reconstruction

Measured projections:

$$
R_{\beta}(a, b)
$$

- Multiple fans with the same origin
- The X-ray source is rotated on a circular trajectory in the x/y plane
- The detector has planar shape
- Using this geometry, it is not possible to do an exact reconstruction of the object

The Feldkamp Algorithm

- Developed in 1984 by Feldkamp, Davis, Kress
- Approximate method for reconstruction from Cone beam data
- The reconstruction is based on filtering and backprojecting the single planes in the cone independently.
- The reconstruction result is obtained by summing up the contributions of all tilted fan beams.
- The final algorithm is very similar to the 2D algorithm for equispaced fan beams on a collinear detector.

The Feldkamp Algorithm

Step 1: Preprocess each projection using

$$
R_{\beta}^{\prime}(a, b):=R_{\beta}(a, b) \frac{D}{\sqrt{D^{2}+a^{2}+b^{2}}}
$$

Step 2: Convolve each projection in 'a'-direction with the impulse response

$$
\begin{aligned}
& g(a)=\frac{1}{2} h(a) \\
& Q_{\beta}(a, b)=R_{\beta}^{\prime}(a, b) * \frac{1}{2} h(a)
\end{aligned}
$$

The Feldkamp Algorithm

Step 3: Perform a weighted backprojection of each filtered projection along the cone

$$
f(x, y, z)=\int_{0}^{2 \pi} \frac{1}{U^{2}} Q_{\beta}(a(x, y, \beta), b(x, y, z, \beta))
$$

Where a and b can be found by backprojecting voxel (x, y, z) into projection β :

$$
\begin{aligned}
& a(x, y, \beta)=D \frac{x \cos \beta+y \sin \beta}{D+x \sin \beta-y \cos \beta} \\
& b(x, y, z, \beta)=\frac{z D}{D+x \sin \beta-y \cos \beta}
\end{aligned}
$$

And the weighting factor U is identical to the factor for fan beam reconstruction:

$$
U(x, y, \beta)=\frac{D+x \sin \beta-y \cos \beta}{D}
$$

Some notes

- The Feldkamp algorithm is exact for points in the x / y plane (the plane where the source trajectory lies).
- The computation of the coordinates in the projections of a backprojected voxel can be rewritten to a linear mapping in homogeneous coordinates.

References

[Kak] A. C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics, 2001
[Tur] Henrik Turbell, Cone-Beam Reconstruction using Filtered Backprojection. Dissertation, Linköping Studies in Science and Technology, 2001

