Spiral-CT

21. March 2006

Benjamin Keck

Lehrstuhl fuer Mustererkennung (Informatik 5)
Friedrich-Alexander-Universitaet Erlangen-Nuernberg
Outline

1 Motivation

2 3D helical reconstruction algorithms
 - Algorithms
 - Challenges

3 3D Weighted FBP
 - Goales for Stiersdorfer
 - WFBP
 - 3D Geometry
 - 3D Rebinning
 - Filtering
 - Backprojection
Motivation Spiral-CT

- Circular FBP is limited in z-direction
- Constant movement throw the rotating source
- This results in a helical movement
Supposition

- Physics
- Fan-Beam-Geometry
- Parallel Rebinning
- Filtered Backprojection
Overview helical reconstruction algorithms

- exact reconstruction algorithms
 - Kudo et al. 1998
 - Tam et al. 2000
 - Schaller et al. 2000
 - Katsevich et al. 2002

- approximative algorithms
 - Larson et al. 1998
 - Kachelriess et al. 2000
 - Bruder et al. 2000
 - Schaller et al. 2001
 - Flohr et al. 2003
 - Stiersdorfer et al. 2004
Challenges

- Computational complexity for exact algorithms is significantly higher.
- Exact algorithms are not able to deal with redundant data.
- Most approximative algorithms produce good images up to cone angle of 3.2°.
A multislice spiral algorithm for medical applications should satisfy the following criteria:

1. good image quality (clinical)
2. dose efficient
3. able to use variable pitch
4. capable to cope redundant or missing data
5. reconstruction time should be suitable for clinical needs

The segmented multiple plane reconstruction algorithm (SMPR) fulfils these demands for cone angles up to 6.4°, but is computationally not very effective.
3D Weighted FBP

Weighted filtered backprojection (WFBP) published 2004 by Karl Stiersdorfer, Annabella Rauscher, Jan Boese, Herbert Bruder, Stefan Schaller and Thomas Flohr

Algorithm structure:

- rebinning
- filtering
- weighted backprojection
3D Geometry (1)

- Cone-Beam Geometry
- Projection:
 \[p_\alpha(\beta, b) \]
3D Geometry (2)

\[2r \]
\[2R \]
\[\text{pitch} \]
\[hD \]

B. Keck
3D Rebinning is done like 2D Rebinning, but per detector row.

The picture shows Azimuthal Rebinning.
3D Rebinning (2)

- The view parallel to the horizontal rays shows almost no error.
- The sources are on the helix shaped trajectory, so the rays can’t be on one plane.
- The Virtual Detector is in the background, the sources are in the foreground.
Looking parallel to the rays through the lowest row of the Virtual Detector

The rays are not in a plane, but are filtered along this curve. That’s why it’s called an inexact reconstruction.
Filtering is done in row-direction.

Each row of the pseudo-parallel projections is filtered with a high-pass filter.
3D Backprojection (1)

- \(\frac{da_1}{dx_i} \) in Detector Columns
- \(\frac{da_2}{dx_i} \) in \(mm \)
- \(x_i \) in Voxel

\[\vec{a}(\alpha, x_1, x_2) = \]
\[= \vec{a}_0(\alpha) + \]
\[+ x_1 \frac{d\vec{a}}{dx_1}(\alpha) + x_2 \frac{d\vec{a}}{dx_2}(\alpha) \]

\[\vec{a}(\alpha, x_1 + 1, x_2) = \]
\[\vec{a}(\alpha, x_1, x_2) + \frac{d\vec{a}}{dx_1}(\alpha) \]
3D Backprojection (2)
3D Backprojection (3)

Backprojection in principle the same:

- Transform \(\mathbf{v} = (x_1, x_2, z)^T \) to rotated coordinate \(\mathbf{v}' = (a_1, a_2, z)^T \)
- Calculate virtual source position \(s_\alpha(a_2) \) through the voxel \(\mathbf{v}' \)
- Interpolate corresponding projection value \(p_\alpha(a_2, b) \)
- Add up this value to voxel’s result
3D Backprojection (4)

But $p_{\alpha}(a_2, b)$ is not add up directly, it’s weighted by function $w_Q(q)$ before.

$$q = \frac{2b}{h_D}$$

b is row component
h_D hight of the detector
Thank you for Attention

Any Questions?