Spiral-CT

21. March 2006

Benjamin Keck

Lehrstuhl fuer Mustererkennung (Informatik 5) Friedrich-Alexander-Universitaet Erlangen-Nuernberg

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Outline

1 Motivation

- 2 3D helical reconstruction algorithms
 - Algorithms
 - Challenges

3 3D Weighted FBP

- Goales for Stiersdorfer
- WFBP
- 3D Geometry
- 3D Rebinning
- Filtering
- Backprojection

Motivation Spiral-CT

- Circular FBP is limited in z-direction
- Constant movement throw the rotating source
- This results in a helical movement

Supposition

ション (雪) (川) (日) (日) (日) (日)

- Physics
- Fan-Beam-Geometry
- Parallel Rebinning
- Filtered Backprojection

Overview helical reconstruction algorithms

exact reconstruction algorithms

- Kudo et al. 1998
- Tam et al. 2000
- Schaller et al. 2000
- Katsevich et al. 2002
- approximative algorithms
 - Larson et al. 1998
 - Kachelriess et al. 200
 - Bruder et al. 2000
 - Schaller et al. 2001
 - Flohr et al. 2003
 - Stiersdorfer et al. 2004

Challenges

ション (雪) (川) (日) (日) (日) (日)

- computational complexity for exact algorithms is significantly higher
- exact algorithms are not able to deal with redundant data
- most approximative algorithms produces good images up to cone angle of 3.2°

A multislice spiral algorithm for medical applications should satisfy the following criteria:

- 1 good image quality (clinical)
- 2 dose efficient
- 3 able to use variable pitch
- 4 capable to cope redudant or missing data
- 5 reconstruction time should be suitable for clinical needs

The segmented multiple plane reconstruction algorithm (SMPR) fulfils these demands for cone angles up to 6.4° , but is computationally not very effective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Weighted filtered backprojection (WFBP) published 2004 by Karl Stiersdorfer, Annabella Rauscher, Jan Boese, Herbert Bruder, Stefan Schaller and Thomas Flohr

Algorithm structure:

- rebinning
- filtering
- weighted backprojection

3D Geometry (1)

3D Geometry (2)

3D Rebinning (1)

3D Rebinning is done like 2D Rebinning, but per detector row.
The picture shows Azimuthal Rebinning.

SQA

3D Rebinning (2)

The Virtual Detector is in the background, the sources are in the foreground.

one plane.

イロト イロト イヨト イヨト 一座

3D Rebinning (3)

- Looking parallel to the rays through the lowest row of the Virtual Detector
- The rays are not in a plane, but are filtered along this curve. That's why it's called a inexact reconstruction.

ヘロト ヘアト ヘビト ヘビト

Filtering

3D Backprojection (1)

- $\blacksquare \frac{da_1}{dx_i} \text{ in Detector Columns}$
- $\blacksquare \frac{da_2}{dx_i} \text{ in } mm$
- x_i in Voxel
- $\blacksquare \vec{a}(\alpha, \textbf{\textit{x}}_1, \textbf{\textit{x}}_2) =$
- $= \vec{a}_0(\alpha) + x_1 \frac{d\vec{a}}{dx_1}(\alpha) + x_2 \frac{d\vec{a}}{dx_2}(\alpha)$ $\blacksquare \vec{a}(\alpha, x_1 + 1, x_2) = \vec{a}(\alpha, x_1, x_2) + \frac{d\vec{a}}{dx_1}(\alpha)$

3D Backprojection (2)

Backprojection in principle the same:

- Transform $v = (x_1, x_2, z)^T$ to rotated coordinate $v' = (a_1, a_2, z)^T$
- Calculate virtual source position $s_{\alpha}(a_2)$ through the voxel v'
- Interpolate corresponding projection value $p_{\alpha}(a_2, b)$
- Add up this value to voxel's result

3D Backprojection (4)

Thank you for Attention

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 ● 今々で

Any Questions?