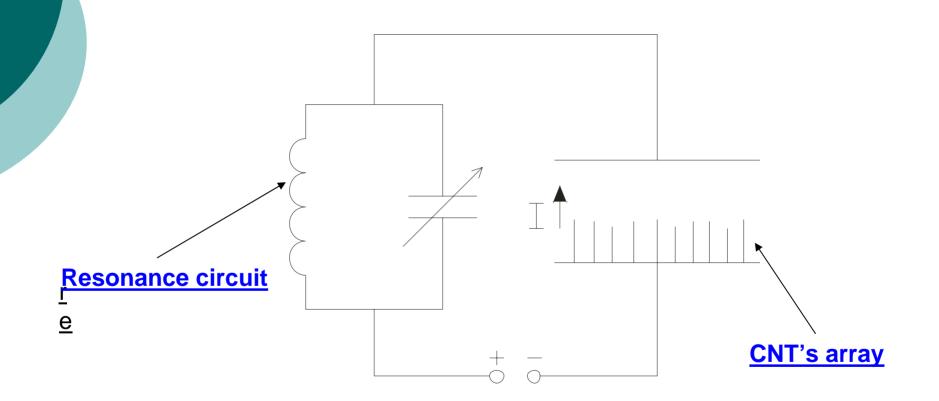
Resonance Frequencies, electrical noises and degradation phenomena in CNT-based sensors

Kate Alekseeva, MIEE

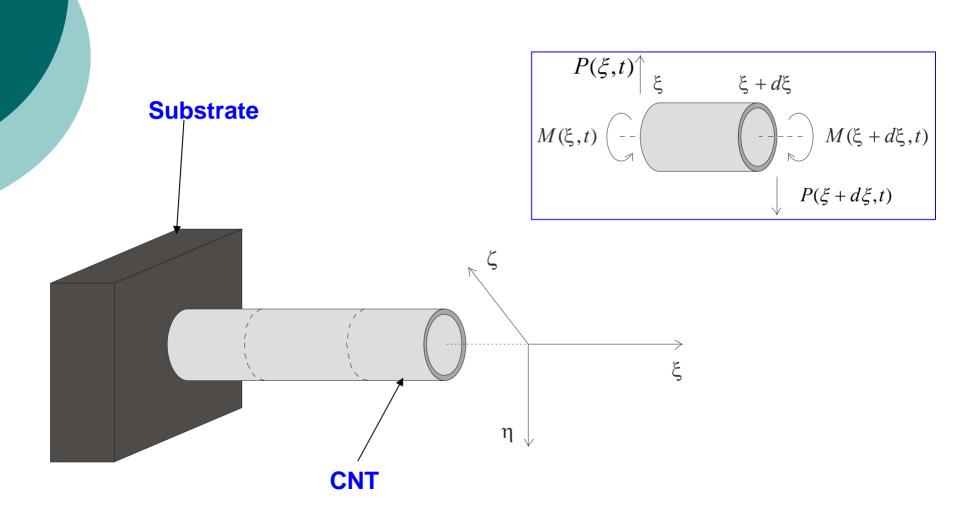
Agenda:

- A sketch of a sensor;
- Resonance frequencies;
- Noises;
- Degradation phenomena

A sensor



Self- Frequency



The equation of mechanical oscillations of the pointed piece is

$$m(\xi)d\xi \frac{\partial^2 y}{\partial t^2} = \frac{\partial P}{\partial \xi}d\xi$$

 $P(\xi,t)$ - a cutting force

$$P(\xi,t) \uparrow \xi \qquad \xi + d\xi$$

$$M(\xi,t) \longrightarrow M(\xi + d\xi,t)$$

$$\downarrow P(\xi + d\xi,t)$$

a moment of normal efforts for the small deformations in the section:

$$M(\xi,t) = EI \frac{\partial^2 y}{\partial \xi^2}$$

$$P(\xi,t) \uparrow \xi \qquad \xi + d\xi$$

$$M(\xi,t) \longrightarrow M(\xi + d\xi,t)$$

$$P(\xi + d\xi,t)$$

A condition of rotation of the shank's element relatively the axis:

$$M(\xi,t) - M(\xi + d\xi,t) - P(\xi,t)d\xi = J\frac{\partial^2 \theta}{\partial t^2}$$

$$J\frac{\partial^2 \theta}{\partial t^2} \approx 0$$

The oscillation equation of the CNT

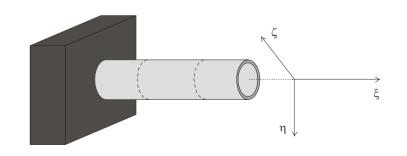
$$\frac{\partial^2 y}{\partial t^2} + a^2 \frac{\partial^4 y}{\partial \xi^4} = 0$$

$$a^2 = \frac{EI}{m}$$
 - a physical parameter defining CNT's oscillations

Boundary conditions:

$$y(0,t) = y'(0,t) = 0$$

 $y''(0,t) = y'''(0,t) = 0$



CTN's self-frequencies

CNT's parameters:

$$E = 10^{12} \frac{N}{m^2}$$

$$l = 5 \mu m$$

$$\rho = 2000 \frac{kg}{m^3}$$

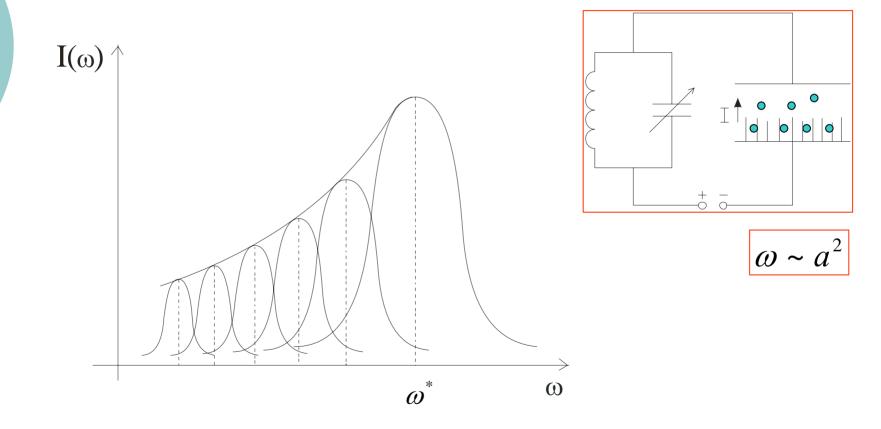
$$S = \pi (r_{ex}^2 - r_{in}^2) = 3.06 \cdot 10^{-17} m^2$$

$$m = V \cdot \rho = 3.06 \cdot 10^{-19} kg$$

j	$\omega_{_j}$,GHz	f_{j} ,GHz
1	0.021	0,003
2	0,132	0,02
3	0,37	0,06
4	1,19	0,19
5	1,79	0,28
6	2,5	0,4

 $\omega \sim a^2$

Resonance Curves



Noises

Fluctuation Noise

	$\pmb{\omega}_j$,GHz	$\Delta i = \sqrt{2ei\Delta f}$, nA	P, nW
1	0.021	1	26
2	0.132	2,6	65
3	0.37	4,3	110
4	1.19	7,9	200
5	1.79	9,6	240

Temperature noise

$$\overline{\left(\Delta T\right)^2} = \frac{kT^2}{C}$$

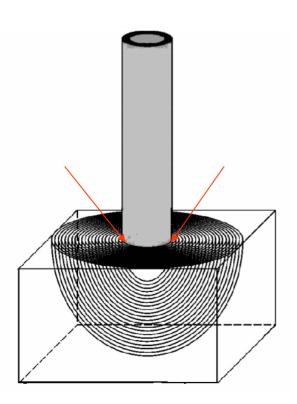
$$\overline{(\Delta T)^2} = 0.00726K^2$$

Thermal Noise

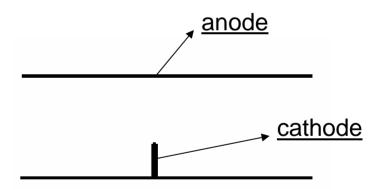
	a_j ,GHz	$\overline{V^2} = 4kT \left\{ \int_{f_1}^{f_2} R(f) \cdot df \right\} \Delta f, \mu V^2$	P, pW
1	0.021	0.7	0.07
2	0.132	4.6	4.6
3	0.37	13	1.3
4	1.19	41	4.18
5	1.79	63	6.29

Degradation Phenomena

LocalOverheating



Ponderomotive Force



Local overheating

$$\lambda_{CNT} \frac{dT \cdot S_1}{dx} + \varepsilon \sigma \left(T_{pick}^4 - T_{base}^4\right) S_2 = P,$$

 $\lambda_{\scriptscriptstyle CNT}$ — Coefficient of thermal conductivity

 $\mathcal{E}^{'}$ — emissivity factor;

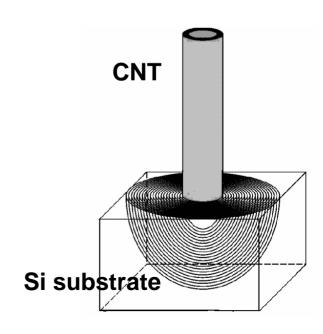
 S_{1} CNT's square;

 S_{2} CNT's section square;

Solution:

U = 4V

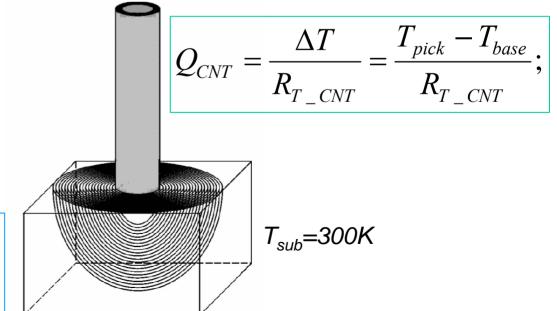
T_{pick}=400K



A probability of the overheating itself

The balance equation is

$$Q_{CNT} + Q_S = P$$

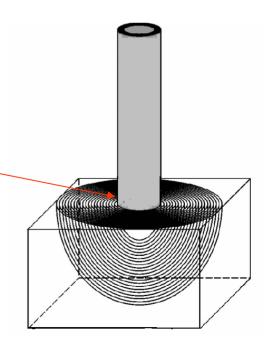


$$Q_{Si} = \frac{\Delta T}{R_{T_Si}} = \frac{T_{base} - T_{sub}}{R_{T_Si}},$$

To make a long story short

$$T_{base} \approx 305K$$

There is no overheating!



Ponderomotive Force

The force which acts on CNT

$$F = q \cdot E$$
,

q – nanotubes charge.

$$q = C \cdot U$$
,

 $C \sim 2r_{ex}$ — the capacity of cathode-anode system

U – a voltage of cathode-anode system

$$F = 4 \cdot 10^{-7} H$$

To sum it up

o mechanical stress is about **1234.89MΠa**, what is much more then possible yield stress of the used catalytic materials. Possible yield stress for nickel is $\sigma_{Ni} = 400 \frac{MN}{m^2}$ for iron is $\sigma_{Ni} = 290 \frac{MN}{m^2}$ Hence, the pressure limit for the system doesn't have to exceed 15V for Ni catalytic layer and 8V for iron catalytic layer.

QUESTIONS?

