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Motivation

Understanding of Solid/Liquid-Interface is inevitable for applications
in the field of Nanobiotechnology and Biosensors

• Biosensors – metal/electrolyte-contact
e.g. ISFET:

• Nanotubes – solid tubes with liquid inside

• Electrokinetics & microfluidics



Introduction

• Structure: crystalline grid

• Smallest unit: unit cell → immobile • Structure: no particular order

• Smallest unit: atoms and molecules → mobile

Solid Liquid

• Dominant forces: covalent bonding

Conductance: electronic
Conductance: ionic

• Dominant forces: ionic and hydrogen bonds

• special: hydration, surface tension



Theoretical Approach Helmholtz layer

Concept of the „Electric double layer“

• The Helmholtz layer:
charged surface

→ electric field
→ attraction of counterions

→ arrangement of plate-capacitor with molecular size

Capacitance per unit area:
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= d - half diameter of solvated ion
ε - dielectric constant of water
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Theoretical Approach Gouy Chapman –
Poisson-Boltzmann

• Gouy-Chapman Theory (GCT):

thermal fluctuations of charge carriers
→ „diffuse electric double layer“

Boltzmann equation (BE):
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use for local charge density

Poisson-Boltzmann equation (PBE = PB + BE):
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• 1:1 salt; otherwise:
• only electric work done
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Theoretical Approach Gouy Chapman – planar surface

Applying PBE to a planar surface:

→ series expansion
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Theoretical Approach Gouy Chapman –
planar surface II

xe κψψ −⋅= 0 Dλκ =−1 → decay length called
Debye length

• exponential drop of potential
• increase of salt concentration
→ steeper drop, shorter Dλ

reason: better screening of surface charge with more ions



Theoretical Approach Gouy Chapman –
linear and full solution

Comparing linear and full solution of PBE:
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• small surface potential:
good linear fit

• higher potentials:
full solution has lower potentials
+ steeper decay for x < λ/2



Theoretical Approach Gouy Chapman – capacity

Capacity of the diffuse electric double layer:

→ relation between surface charge and surface potential     ?σ 0ψ

Grahame equation:
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Capacitance:

• low potentials: linear behaviour
• high salt concentration:
→ more surface charge required

for same potential
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Theoretical Approach Gouy Chapman – discussion

Discussion – limitations of GCT:

• finite size of ions neglected

• continuous charge distribution considered

• non-Coulombic interactions disregarded

• continuous solvent with constant permittivity ε

• flat surface assumed

• …

BUT - good predictions for symmetric electrolytes at:   salt concentrations < 0.2 M
potentials < 50-80 mV



Theoretical Approach Stern‘s Modification

Tuning GCT:
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Stern layer – bound layer of adsorbed ions, immobile: IHP – specific adsorbtion
OHP – nonspecific adsorb.
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Experiment Adsorption – mercury drop

Adsorbtion at the Interface:

→ experiment: mercury drop in electrolytecharge density at interface?
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=γ • p, T - const
• formation of surface unfavourable

special: surface tension -

Gibbs Adsorption Equation:
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Experiment Adsorption – mercury drop II
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repelling excess charge carriers → lowering of γ
- excess charge

Def.: point of zero charge (pzc) ≡ no charge within the metal

expectation for γ over potential?

pzc

asymmetric! → coulombic + specific adsorption

here anions specifically adsorb, cations not



Experiment Specific Adsorption – parameters

Parameters influencing specific adsorption:

• Charge density on solid surface

specific adsorption of ion ↑
↔ opposite charge within solid ↑

note:
anions can be adsorbed at negative charge (see graph)

• Ion Size Effect
size of ion ↑
→ specific adsorption ↑

( hydration weaker…)

• IonType
anions have greater tendency
to spec. adsorb than cations

(for metals observed…)



Experiment Specific Adsorption – parameters II

• Hydration

strong primary hydration sheath → little specific adsorption

Anion F(-) Cl(-) Br(-) I(-)
Ion-Solvent Interaction [kcal/mol] -20.6 -13.6 -12.2 -10.7

• Concentration Change
higher concentration → higher specific adsorption

• Temperature

increase of temperature
→ decrease of

specific adsorption



Experiment (Specific) Adsorption – general parameters

of general importance is:

• type of the solid
→ type of “docking stations” for adsorbates (surface texture)

• solvent-solid interaction
→ solvation of surface + desorption for creating vacancies

• solvent-adsorbate interaction
→ hydration sheath

…



Experiment Limits of Observation

Problem:
• many influences can be measured directly, others cannot 

• there are experimental results striking the so far developed theory

• complexity of parameters to be considered is rising

→ no “all-describing”-theory found yet!

Way out:
developing models for simulation + 

comparing results with real experiment



Simulation Four State Model - idea

special property of water:
DIPOLE

Four state model (1975):
experimental data –
capacity over excess charge:

explanation?

idea: dipoles cause extra potential drop 
→ influence on capacitance

assumption: no specific adsorption
→ first adsorbed layer only water
→ four states to be differed



Simulation Four State Model - model

Monolayer of water with single molecules + clusters of molecules – 2 dipole directions

cN +

cN −

N +

N −

cµ

µ → 4 states
N – # molecules of certain state in monolayer
µ – dipole moment

Energies:

solvent molecule in cluster -

monolayer permittivity

}
/c cµ σ ε+ = −U

{/c cµ σ ε− =U

charge on metal

/ bUµσ ε += − ++U

{
/ bUµσ ε −= +-U

due to different bonding

free solvent molecule -

Potential drop across inner layer:
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dipoles C
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idea: Boltzmann for N + varying parameters



Simulation Four State Model - results

Total capacitance:
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Simulation Four State Model - results II

results from adapting the parameters:
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• asymmetry, because of different stability of 2 orientations of free molecules

• 3 water molecules per cluster

• total dipole moment of cluster approx
same as dipole moment of free molecule
→ ring groupings of water possible:

• maxima + minima are deduced as
high or low switching-possibilities
of the dipole orientation:

0, , , ,c b bU U Cε µ + −



Simulation Diffuse Layer Capacitance

Diffuse Layer Capacitance:

Influence of diffuse layer around pzc
strong for low concentrations:More experimental capacitance-data:
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Simulation Adsorption Capacitance

Adsorption Capacitance:

• Assume absorbed charged molecules
RTFzRTGb
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→ Adsorption isotherm – here: Langmuir isotherm:
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Simulation Molecular Dynamics Simulations –
model, results

Molecular Dynamics Simulations (MDS) of water at hydrophobic substrates:
(2004)

• Aim: water density depending on - curvature (spherical, planar)
- temperature
- pressure

• Model: for interactions used models

simulation cell: cubic box filled with ~ 1000 – 3000 water molecules
periodic boundary conditions

- Lennard-Jones + Coulomb potential
- Buckingham potential

I: spherical solute in box• Results

- increased density for small solute
- water depletion for large solute

- Temperature increase causes
decrease of density

- Same pressure dependence
as at Results II 



Simulation Molecular Dynamics Simulations – results II

• Results II: planar surface in box

64 alkane molecules + 2781 water molecules

- water depletion at interface
→ layer thickness ~ 2.5 A

- high pressure reduces depletion layer

- layerthickness rises with Temperature

- potential drop at interface
→ caused by dipoles
→ top water layer oriented



Simulation Molecular Dynamics Simulations –
facing reality

Experiments on depletion (2003):
Experimental data also gives reason to a depletion layer of water on
hydrophobic substrates:

Neutron Reflectivity Measurements
&

Atomic Force Microscopy

• Layer thickness:
2-5nm

20nm 

• Oberserved interface:

on a
hydrophobic plane

OD2

• memory-effect observed

3D-plot

AFM: tapping mode topology image of
„nanobubbles“

NRM: Kiessig oszillations due to gas layer
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Application Electrokinetics – zeta potential

Electrokinetics:

• due to strong electrostatic forces
ions in the inner layer are immobile
• under pressure driven flow (pdf)

ions of the diffuse layer are able to
move → shear plane is formed

zeta-potential:

( ) ( )bulkshear xx ψψζ −=



Application Electrokinetics –
stream current & potential

fluid in a (micro)tube:

• zeta-potential ≠ 0 grants movable
net charges in diffuse layer

• pdf induces a stream of charges
in a capillary:
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Dstream rdArrI νρπρν 2== ∫ - drift velocitiy in diffuse layer
- charge densitiy in diffuse layer

capillary radius

• depletion and accumulation of charges at ends of capillary respectively:
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- conductance
Ohm‘s law



Application Electrokinetic Measurements on Adsorption -
idea

Analysing charge density of the inner layer using electrokinetic measurements:
(2001)

ζ-potential separates immobile and mobile layer

basic idea:
sign of ζ-potential reveals sign of total
charge within the inner layer

electrokinetic values measured:
streaming potential & current

correlation with ζ-potential:
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Application Electrokinetic Measurements on Adsorption -
plots

Obtained data:

conclusions:

• HCl:

• pure water: +− +↔ OHOHOH 322
→ negative ζ-potential

• KOH:

• KCl:

- first H-ions preferred → sign reversal
- then: double layer compression

- first OH-ions preferred, afterwards:
- compression of the double layer
→ increasing surface charge compensation

already within inner layer (screening…)
- only double layer compression



Application Electrokinetic Measurements on Adsorption -
results

Conclusions:
+−+− =>>> KClOHOH 3preferential adsorption:

IEP

• pH-dependence:
→ low IEP proves result above

important factors for adsorption:

• structure of hydration shell important
(OH-ion known to have less stable hydration
structures → escapes more easily and builds
up hydrogen bonds with interfacial water)

• capability to bind interfacial water via 
hydrogen bonds

• another experiment using pH-Dependant Force Spectroscopy leads to conclusion:

- immobilized interfacial water acting as template for hydroxyl adsorption
- density of molecular units of water building networks on the surface crucial



Application Electroosmosis – what it is

Electroosmosis:

• Applying electric field along capillary
→ movement of liquid relative to stationary charged surface

• electric field induces force on net charge
in diffuse layer

• diffuse layer displacement leads to
dragging of bulk fluid

drift velocity of fluid:

xE
η
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cµ - osmotic mobility



Application Electroosmosis – properties

the way to have laminar flow in microfluidics
at low Reynold‘s numbers

• advantage of electroosmosis:

- ζ-potential = -100mV
- electric field = 2.5 x 10³V/m

• example:

time development after switching on the e-field → dragging → laminar flow

sm /200µνς =
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