

Solid

MB-JASS 2006 Zelenograd, Moscow **Nanobiotechnology and Biosensors**

Alexander Mehlich

I. Motivation II. Introduction III. Theoretical Approach IV. Experiment V. Simulation **VI.** Application VII. Review

Motivation

Understanding of Solid/Liquid-Interface is inevitable for applications in the field of Nanobiotechnology and Biosensors

• Biosensors – metal/electrolyte-contact e.g. ISFET:

- Nanotubes solid tubes with liquid inside
 - Electrokinetics & microfluidics

Introduction

Solid

- Dominant forces: covalent bonding
- Structure: crystalline grid
- Smallest unit: unit cell \rightarrow *immobile*

Conductance: electronic

Liquid

- Dominant forces: ionic and hydrogen bonds
 - special: hydration, surface tension
- Structure: no particular order
- Smallest unit: atoms and molecules \rightarrow *mobile*

Conductance: ionic

Theoretical Approach Helmholtz layer

Concept of the "Electric double layer"

• The Helmholtz layer:

charged surface

→ electric field

 \rightarrow attraction of counterions

 \rightarrow arrangement of *plate-capacitor* with molecular size

Capacitance per unit area:

$$C_{H}^{A} = \frac{\mathcal{E} \cdot \mathcal{E}_{0}}{d} \quad d \text{ - half diameter of solvated ion}$$
$$\mathcal{E} \text{ - dielectric constant of water}$$

Potential - Poisson equation (PE):

Theoretical Approach

Gouy Chapman -

Poisson-Boltzmann

• Gouy-Chapman Theory (GCT):

thermal fluctuations of charge carriers → ,,diffuse electric double layer"

Boltzmann equation (BE):

$$c_{i} = c_{i}^{0} \cdot \exp\left(\frac{-W_{i}}{k_{B}T}\right) \implies \rho = e(c^{+} - c^{-}) = ec_{0} \cdot \left[\exp\left(-\frac{e\psi(x, y, z)}{k_{B}T}\right) - \exp\left(\frac{e\psi(x, y, z)}{k_{B}T}\right)\right]$$

use for local charge density

Poisson-Boltzmann equation (PBE = PB + BE):

$$\nabla^2 \psi = \frac{c_0 e}{\varepsilon \varepsilon_0} \cdot \left(e^{-\frac{e\psi}{k_B T}} - e^{\frac{e\psi}{k_B T}} \right)$$

assumptions made:

- 1:1 salt; otherwise: $e \rightarrow z_i \cdot e$
- only electric work done

Applying PBE to a planar surface:

Theoretical Approach

Gouy Chapman -

planar surface II

- exponential drop of potential
- increase of salt concentration
- \rightarrow steeper drop, shorter λ_D

reason: better screening of surface charge with more ions

Theoretical Approach

Gouy Chapman -

Comparing linear and full solution of PBE:

20 mM monovalent salt

Capacity of the diffuse electric double layer:

 \rightarrow relation between surface charge σ and surface potential ψ_0 ?

Discussion – limitations of GCT:

- finite size of ions neglected
- continuous charge distribution considered
- non-Coulombic interactions disregarded
- \bullet continuous solvent with constant permittivity ϵ
- flat surface assumed

• ...

BUT - good predictions for symmetric electrolytes at: salt concentrations < 0.2 M potentials < 50-80 mV

Theoretical Approach Stern's Modification

Tuning GCT:

I. Motivation

II. Introduction

III. Theoretical Approach

IV. Experiment

V. Simulation

VI. Application

VII. Review

Adsorbtion at the Interface:

charge density at interface?

→ experiment: **mercury drop** in electrolyte

n - # of charge carriers on surface, μ - chem. potential

special: surface tension -

$$\gamma = \frac{\partial G}{\partial A}$$

p, T - const formation of surface unfavourable

Gibbs Adsorption Equation:

$$S = \frac{1}{\sqrt{2}} \frac{1}{$$

 \rightarrow p, T const

onst:
$$-d\gamma = \sum_{i} \frac{n_{i}^{\sigma}}{A} d\overline{\mu_{i}}$$
 - Gibbs Adsorption isotherm
 $\sigma^{M} = -F \frac{n_{e}}{A}$ - excess charge
 $-d\gamma = \sigma^{M} dE$ - electrocapillary equation

here anions specifically adsorb, cations not

Parameters influencing specific adsorption:

• Charge density on solid surface

specific adsorption of ion ↑
↔ opposite charge within solid ↑

note:

anions can be adsorbed at negative charge (see graph)

Ion Size Effect
size of ion ↑
→ specific adsorption ↑
(hydration weaker...)

• IonType

anions have greater tendency to spec. adsorb than cations

(for metals observed...)

• Hydration

strong primary hydration sheath \rightarrow little specific adsorption

Anion	F(-)	CI(-)	Br(-)	l(-)
Ion-Solvent Interaction [kcal/mol]	-20.6	-13.6	-12.2	-10.7

Concentration Change

higher concentration \rightarrow higher specific adsorption

• Temperature

increase of temperature → decrease of specific adsorption

of general importance is:

• type of the solid

. . .

 \rightarrow type of "docking stations" for adsorbates (surface texture)

• solvent-solid interaction

 \rightarrow solvation of surface + desorption for creating vacancies

• solvent-adsorbate interaction

 \rightarrow hydration sheath

Problem:

- many influences can be measured directly, others cannot
- there are experimental results striking the so far developed theory
- complexity of parameters to be considered is rising

 \rightarrow no "all-describing"-theory found yet!

Way out:

developing models for simulation + comparing results with real experiment

Four state model (1975):

experimental data – capacity over excess charge:

special property of water: DIPOLE

idea: dipoles cause extra potential drop \rightarrow influence on capacitance

assumption: no specific adsorption \rightarrow first adsorbed layer *only* water \rightarrow four states to be differed

μ

 μ_c

Monolayer of water with single molecules + clusters of molecules - 2 dipole directions

 \rightarrow 4 states

N-# molecules of certain state in monolayer $\mu-dipole$ moment

Energies:

solvent molecule in cluster -

free solvent molecule -

charge on meta

$$\begin{bmatrix}
 U_c^+ &= -\mu_c \, \overline{\sigma} \, / \, \varepsilon \\
 U_c^- &= \mu_c \, \overline{\sigma} \, / \, \varepsilon
 \end{bmatrix}$$

monolayer permittivity

$$\begin{array}{c} \mathbf{U}^{\scriptscriptstyle +} = -\mu\sigma/\varepsilon + \boldsymbol{U}_b^{\scriptscriptstyle +} \\ \mathbf{U}^{\scriptscriptstyle -} = \mu\sigma/\varepsilon + \boldsymbol{U}_b^{\scriptscriptstyle -} \end{array} \end{array}$$

due to different bonding

Potential drop across inner layer:

 N^{-}

 N_c^+

 N_c^-

 N^+

$$\Delta \phi = \overset{free charge}{\psi} + \underset{dipoles}{\chi} = \frac{\sigma}{C_0} + \chi$$

$$\chi = -\mu_c N_c^+ / \varepsilon + \mu_c N_c^- / \varepsilon - \mu N^+ / \varepsilon + \mu N^- / \varepsilon$$

idea: Boltzmann for N + varying parameters

Four State Model - results

results from adapting the parameters:

 $\mathcal{E}, \mu_c, U_h^+, U_h^-, C_0$

- asymmetry, because of different stability of 2 orientations of free molecules
- 3 water molecules per cluster
- total dipole moment of cluster approx same as dipole moment of free molecule
 → ring groupings of water possible:

• maxima + minima are deduced as high or low switching-possibilities of the dipole orientation:

Diffuse Layer Capacitance:

More experimental capacitance-data:

Influence of diffuse layer around pzc strong for low concentrations:

Huge minimum at very low concentrations

Adsorption Capacitance

 $\overline{1-\theta}$

Adsorption Capacitance:

• Assume absorbed charged molecules

 \rightarrow Adsorption isotherm – here: Langmuir isotherm:

• Surface charge:
$$Q_{Sadsp} = q_i \cdot \theta$$

 \rightarrow Capacitance due to adsorbed molecules =

∆G/kT

 $=a_i^b e^{-\Delta G_i^0/RT} e^{-z_i F \phi/RT}$

Simulation Molecular Dynamics Simulations –

model, results

(2004)

Molecular Dynamics Simulations (MDS) of water at hydrophobic substrates:

- <u>Aim</u>: water density depending on curvature (spherical, planar)
 - temperature
 - pressure
- <u>Model</u>: for interactions used models Lennard-Jones + Coulomb potential - Buckingham potential

simulation cell: cubic box filled with $\sim 1000 - 3000$ water molecules periodic boundary conditions

- <u>Results</u> I: *spherical* solute in box
 - increased density for small solute
 - water depletion for large solute
 - Temperature increase causes decrease of density
 - Same pressure dependence as at Results II

Simulation Molecular Dynamics Simulations – results II

• <u>Results</u> II: *planar* surface in box

Snapshot of the MD simulation of a planar 64 alkane molecules + 2781 water molecules

- water depletion at interface \rightarrow layer thickness ~ 2.5 A
- high pressure reduces depletion layer
- layerthickness rises with Temperature
- potential drop at interface
 - \rightarrow caused by dipoles
 - \rightarrow top water layer oriented

Simulation Molecular Dynamics Simulations –

Experiments on depletion (2003):

Experimental data also gives reason to a depletion layer of water on hydrophobic substrates:

NRM: Kiessig oszillations due to gas layer

AFM: tapping mode topology image of *"nanobubbles*"

I. Motivation
II. Introduction
III. Theoretical Approach
IV. Experiment
V. Simulation

VI. Application

VII. Review

Application

Electrokinetics:

due to strong electrostatic forces ions in the inner layer are *immobile*under pressure driven flow (pdf) ions of the diffuse layer are able to *move* → shear plane is formed

zeta-potential:

$$\zeta = \psi(x_{shear}) - \psi(x_{bulk})$$

Application

Electrokinetics –

stream current & potential

fluid in a (micro)tube:

- zeta-potential ≠ 0 grants movable net charges in diffuse layer
- pdf induces a stream of charges in a capillary:

$$I_{stream} = \int_{A} v_D(r) \rho(r) dA = 2\pi r \rho_D v_D$$

capillary radius

 σ_D - charge densitiy in diffuse layer V_D - drift velocitiy in diffuse layer

• depletion and accumulation of charges at ends of capillary respectively:

$$C = \frac{\pi r^2 k}{l} - conductance$$
 Ohm's law

$$U_{stream} = \frac{i}{C} = \frac{2\sigma_D v_D l}{r \cdot k}$$

(k = specific conductivity of solution)

Application Electrokinetic Measurements on Adsorption -

idea

<u>Analysing charge density of the inner layer using electrokinetic measurements:</u> (2001)

ζ-potential separates *immobile* and *mobile* layer

basic idea: sign of ζ -potential reveals sign of total charge within the inner layer

electrokinetic values measured: *streaming potential & current* correlation with ζ-potential:

$$\zeta(I_s) = \frac{\eta L}{\varepsilon_0 \varepsilon_r bh} \frac{dI_s}{dp}$$

experimental setup

Application Electrokinetic Measurements on Adsorption -

-100

10

10

10-3

10

10

 $c_{\rm KCI}$ [mol/l] ζ potential of Teflon AF versus KC1 concentration

- only double layer compression

10

101

- first OH-ions preferred, afterwards:
- compression of the double layer
 - → increasing surface charge compensation already within inner layer (screening...)

Application Electrokinetic Measurements on Adsorption -

results

Conclusions:

preferential adsorption:

$$OH^{-} > H_{3}O^{+} >> Cl^{-} = K^{+}$$

• pH-dependence:
 → low IEP proves result above

important factors for adsorption:

- structure of hydration shell important (OH-ion known to have less stable hydration structures → escapes more easily and builds up hydrogen bonds with interfacial water)
- capability to bind interfacial water via hydrogen bonds

- another experiment using pH-Dependant Force Spectroscopy leads to conclusion:
 - immobilized interfacial water acting as template for hydroxyl adsorption
 - density of molecular units of water building networks on the surface crucial

Electroosmosis:

- Applying *electric field* along capillary → movement of liquid relative to stationary charged surface
- electric field induces *force* on net charge in diffuse layer
- diffuse layer displacement leads to *dragging* of bulk fluid

drift velocity of fluid:

- Helmholtz-Smoluchowski

 μ_c - osmotic mobility

Application

Electroosmosis – properties

- advantage of electroosmosis:
- *the* way to have **laminar flow** in microfluidics at low Reynold's numbers
 - example:
 - ζ -potential = -100mV
 - electric field = $2.5 \times 10^3 V/m$

$$v_{\varsigma} = 200 \,\mu m \,/\,s$$

time development after switching on the e-field \rightarrow dragging \rightarrow laminar flow

Review

Electrokinetics, microfluidics...

References

•! Hans Juergen Butt, Karlheinz Graf, Michael Kappl, Physics and Chemistry of Interfaces, Wiley-VCH Verlag & Co. KGaA, 2003

- S. Roy Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York 1980
- Horst Kuchling, **Taschenbuch der Physik**, 17. Auflage, Fachbuchverlag Leipzig im Carl Hanser Verlag, München Wien 2001

• J. O'M. Bockris, Brian E. Conway, Ernest Yeager, **Comprehensive Treatise of Electrochemistry -** Volume 1: The Double Layer, Plenum Press, New York and London 1975+

Roger Parsons, A Primitive Four State Model for Solvent at the Electrode-Solution Interface, printed in Electroanalytical Chemistry and Interfacial Electrochemistry, 59, 229-237, Elsevier Sequoia S.A., Lausanne - printed in Netherlands 1975
Rolando Guidelli, Wolfgang Schmickler, Recent Developments in Models for the Interface between a Metal and an Aqueous Solution, printed in Electrochimica Acta, 45,

2317-2338, Elsevier Science Ltd., 2000

References

Ralf Zimmermann, Stanislav Dukhin, Carsten Werner, Electrokinetic Measurements Reveal Interfacial Charge at Polymer Films Caused by Simple Electrolyte Ions, printed in J. Phys. Chem., 105, 8544-8549, American Chemical Society, on web 2001
Christian Dicke, Georg Haehner, pH-Dependent Force Spectroscopy of Tri(ethylene Glycol)- and Methyl-Terminated Self-Assembled Monolayers Adsorbed on Gold, JACS articles, 124, 12619-12625, American Chemical Society, on web 2002
Roland Steitz, ..., Nanobubbles and Their Precursor Layer at the Interface of Water Against a Hydrophobic Substrate, Langmuir, 19, 2409- 2418, American Chemical Society, on web 2003
Roland R. Netz, Shavkat I. Mamatkulov, Pulat K. Khabibullaev, Water at Hydrophobic Substrates: Curvature, Pressure and Temperature Effects, Langmuir, 20, 4756-4763,

American Chemical Society, on web 2004

Qualitative:

$$\begin{aligned} \varepsilon &= 5.3 \cdot \varepsilon_0 \\ d &= 0.31 nm \end{aligned} C_0 = \frac{\varepsilon}{d} \approx 15 \mu F / cm^2 \\ \mu_c &= 0.28 \cdot \mu = 1.4 \cdot 10^{-30} Cm \\ N_{tot} &= 7 \cdot 10^{14} cm^{-2} \end{aligned}$$

