Commercial Biosensors

Overview

- What is a biosensor?
- The biological component
 - Immobilization
- Some transducer principles
 - Electrochemical
 - Optical
 - Acoustic-Piezoelectric
- Some application areas
 - Diabetes
 - Marine observation
- Conclusion

Introduction

• Aim: combining the specificity and sensitivity of biological systems with the computing power of the microprocessor

The Analyte

In principle any substance that takes part in a biochemical process:

- Anorganic:
 - Gases
 - Ions (pH)
 - Heavy metals

- Organic:
 - Organic acids (\rightarrow proteins)
 - Carbohydrates (sugars)
 - Urea $(NH_2)_2CO$
- More generally: any unit, (part of) which is involved in a biochemical process:
- Microorganisms

Antibodies

• (Microbial) cells

• Antigens

The Bioreceptor

Any biological substance that can attach itself to a particular analyte:

- Antibodies
- Nucleic acids
- Receptors

...and unpurified material containing such a substance:

• Organisms, slices of tissue, cells, organelles, membranes

Receptors

Example: labelling antibodies

Catalase: $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Receptors: specificity vs. stability

adsorption

Transducers: an overview

- Electrochemical:
 - Potentiometry
 - Amperometry
- Optical:
 - Ultraviolet-visible absorption
 - Luminescence
 - Laser light scattering
- Mechanical-piezoelectric
- Acoustical-piezoelectric

Surface Acoustic Wave (SAW)

Calorimetric

- Conductimetry
- Field Effect Transistors

Internal Reflection Spectroscopy

- Surface Plasmon Resonance (SPR)

Electrochemical transducers

- Potentiometry
- Amperometry
- Conductimetry
- Field Effect Transistors

NH₃ → Urea, amino acids, creatinine
 CO₂ → Urea, amino acids, enzymes
 pH → Penicillin, DNA, RNA, glucose, pH-enzymes
 I⁻ → Glucose, cholesterol, amino acids

Difference between indicator and reference electrode potential at equilibrium (i.e. zero current)

The electrochemical cell

- Gibbs free energy of a half cell (Ox + ne⁻ = Red):
 ΔG = -nFE = -RT ln K
- → Nernst equation for the electromotive force of a half-cell:
 E = E* + RT/nF · ln (a_{Ox}/a_{Red})

Ion-selective Electrode (ISE)

Ion-selective electrode

Reference electrode

Electrochemical transducers

- Potentiometry
- Amperometry
- Conductimetry
- Field Effect Transistors

Difference between indicator and reference electrode potential at equilibrium (i.e. zero current)

> Current flowing between working and reference electrode

Amperometry

- At t₀ a voltage is applied over the electrodes, causing the cell to "recharge".
- The diffusion rate of fresh Ox decreases.
 Fick's law: dC/dt = D * d²C/dC²

Amperometry (2)

→ The diffusion-limited current decays over time:

 $i_d = nFADC_{Ox} / \sqrt{(\pi t)}$

Electrochemical transducers

- Potentiometry
- Amperometry
- Conductimetry
- Field Effect Transistors

Difference between indicator and reference electrode potential at equilibrium (i.e. zero current)

> Current flowing between working and reference electrode

Transistors where the gate metal has been replaced by a chemically sensing surface

Field Effect Transistor

Optical transducers

- Ultraviolet-visible absorption
- Luminescence
- Internal Reflection Spectroscopy
 - Surface Plasmon Resonance (SPR)
- Laser light scattering

Example: luminescence

Combining chemiluminescence and fluorescence

Total Internal Reflection (TIR)

• Snell's law: air $n_1 \sin \theta_1 = n_2 \sin \theta_2$

$$\rightarrow \theta_c = \sin^{-1}(n_2/n_1)$$

air
$$\theta_t$$

 θ_i
glass

1

 \sim

Commercial Biosensors - Nathalie Munnikes - TUM

28

Total Internal Reflection Fluorescence

Plasmons & TIR

• A plasmon is a quasiparticle, belonging to a collective oscillation of the free electron gas in (semi)conductors.

• An evanescent wave at a dielectric/conducting medium interface can excite surface plasmons

Plasmons & TIR (2)

 \rightarrow Gap in the reflected light intensity

• How to involve biomaterial in this?

→ Thin conducting layer with biomaterial on the other side. A small change in refractive index of the biomaterial causes a large shift of θ .

Surface Plasmon Resonance

Piezoelectricity

- Applied stress: $T = cS e^T E$
- Electric displacement (polarization): $D = eS + \epsilon E$

The Rayleigh Surface Wave

• Amplitude ~ 10Å

Surface Acoustic Wave Transducer

Surface Acoustic Wave Transducer

• Resonance frequency: $F_0 = V_R / \lambda = V_R / 4d$

Overview

- What is a biosensor?
- The biological component
 - Immobilization
- Some transducer principles
 - Electrochemical
 - Optical
 - Acoustic-Piezoelectric
- Some application areas
 - Diabetes
 - Marine observation
- Conclusion

Application areas

- Health industry
 - Blood glucose sensors for diabetes patients
- Food industry
 - Determination of the composition
 - Degree of contamination:
 - Pathogens, pesticides, microorganisms, toxins
 - On line control of the fermentation process
- Natural environment
 - Water quality control

History of the biosensor

Leland C. Clark Jr. (1918-2005)

- Invented by Clark in 1962
- Commercialized in 1974
- World market in 2004:

\$5 billion

First commercial glucose biosensor

Diabetes

- Medical disorder, where the hormone that regulates uptake of sugars fails
 - \rightarrow high blood glucose level
- Type 1: lack of insulin Type 2: lack of insulin sensitivity
- 2006: 171 million people, 2030: twice as much
- #6 of the leading causes of death in the US

Blood glucose biosensors

- Replaced the reflectance meters
- Now: 85% of the world market for biosensors

Marine observation

• Nutrient concentrations, algal biomass, species composition, water quality (oxygen, toxins etc.)

Commercial success & expectations

Commercial succes due to popularity in:

- Academic research (cheap equipment, broad learning field)
- Politics (improvement of human health / environment; defence against biochemical terrorism)

Sensor type	Advantages	Disadvantages
Single use	high accuracy and sensitivity, modest costs	
Intermittent use	fast	not precise, very expensive
Continuous use		cannot hold calibration yet

References

[7]

- Lecture "Biochemical Sensors" (2003/04) [1] Jose Garrido, Technische Universität München http://www.wsi.tumuenchen.de/E25/research/DiamondGarrido/josegarrido/lecture.htm **Biosensors: Fundamentals and Applications** [2] A. Turner, I. Karube and G. Wilson Oxford University Press, Oxford 1987 [3] Biosensors – a perspective Peter Kissinger Biosensors and Bioelectronics 20, 2005 Home blood glucose biosensors: a commercial perspective [4] J. Newman, Anthony Turner Biosensors and Bioelectronics 20, 2005 Enzyme inhibition-based biosensors for food safety and environmental [5] monitoring A. Amine, H. Mohammadi, I. Bourais, G. Palleschi Biosensors and Bioelectronics 21, 2006 Biosensors for marine applications – we all need the sea, but does the sea [6] need biosensors? S. Kröger, R. Law Biosensors and Bioelectronics 20, 2005
- C. Taitt, G. Anderson, F. Ligler Biosensors and Bioelectronics 20, 2005 Listening to the brain: microelectrode biosensors for neurochemicals [8] N. Dale, S. Hatz, F. Tian and E. Llaudet Trends in Biotechnology 23, 2005 Review of the use of biosensors as analytical tools in the food and drink [9] industries L. Mello, L. Kubota Food Chemistry 77, 2002 [10] Ion-Selective Electrodes (2005) Chemical Sensors Research Group, Warsaw University of Technology http://csrg.ch.pw.edu.pl [11] Biosensors : an introduction **Brian Eggins** Wiley Teubner, Stuttgart 1996 Surface Plasmon Resonance [12] Arnoud Marquart http://home.hccnet.nl/ja.marquart/BasicSPR/BasicSpr01.htm E-Mail: n.munnikes@mytum.de

Evanescent wave fluorescence biosensors