Ion-sensitive field-effect transistors

Basics and Applications

Content

- Introduction
- THEORY
 - MOSFETs
 - MOS-system
 - MOSFET Operation
 - ISFETs
 - EOS-system
 - pH sensitivity and site binding model

- APPLICATIONS
 - ENFETs
 - Concept
 - Example
 - Sensor/actuator systems
 - Surface Charge Sensitivity
 - DNA sensor
 - BIOFET
 - Application of new materials
 - GaN
 - Diamond
 - Conclusions

Introduction

- Introduction of potentiometric sensors
 - Measuring the electrical potential difference at a solid/liquid interface
 - Nernst Equation
 - $\Delta \phi = RT/F \ln a_{i1}/a_{i2}$
 - $a_{i1,2} = f_i c_i = activity of ions i$
 - Constant potential drop at the inner surface of the bulb
 - Contact between inner KCI solution and the outer solution
 - Electrochemical couple

Fig.1 Cross sectional view of combined pH electrode.

Introduction

- Problem of miniaturizing
 - Less stable

→ problematic for in vivo measurments

- Bergveld 1970: "Development af an Ion-Sensitive Solid-State Device for Neurophysiological Measurements"
- Advantage of chip technology
 - cheaper
 - Improved characteristics
 - Reproducability
- Ion-Sensitive Field-Effect Transistor (ISFET)
 - small and rigid
 - fast response

Introduction

- Industry: Development of patents
- Markets:
 - Food industry
 - Biomedical industry
- Biocompatibility is still a big problem for in vivo measurements
- Future: inline-monitoring of industrial processes

- Metal Oxide Semiconductor
 - Field effect: Voltage $V_{\rm G}$ induces charges at the surfaces \rightarrow electric field
 - Ideal MOS-structure
 - W_M = W_{Si}
 - perfect insulator
 - no charges inside the oxide

- Apply a voltage V_G
 - Inducing surface charges /space charges
 - Bending: due to surface charges/applied potential

Ψ_S = potential at the semiconductor surface, determines the bending
Calculation by solving Poisson Equation
Boundary conditions:
i) electric field E = 0 inside sc

ii) electric field $E \sim Q_S$

Leads to a relation between surface charges Q_s and the surface Potential

 Ψ_s = 0 = Flatband condition (ideal MOS)

P-type semiconductor

 $V_{\rm G}$ < 0

 $E_{F,M}$ increasement

 \rightarrow upward bending

Accumulation fo holes at the sc/ oxide inetrface

$V_{G} > 0$

 $E_{F,M}$ decreasement

 \rightarrow downward bending

Depletion of charge carriers (holes) negative space charge

(insulating layer)

P-type semiconductor

 $V_G >> 0$: Inversion Strong downward bending \rightarrow $E_i < E_F$: E_F closer to E_C than to E_V $N_e > N_h$

Strong depletion:

SC far away from Equilibrium n * p = n_i^2 \rightarrow generation of electron-hole couples accumulation of electrons at the Si/Ox interface

n – type semiconductor

Distribution of surface charge $\rm Q_s$

Equivalent situation, with changed polarity

Strong inversion definition:

$$\Psi_s(inv) = 2\Psi_b$$

Threshold voltage U_T :

voltage required to induce and inversion layer

$$U_T = U_G(inv) = 2\Psi_b + \Psi_i$$

$$\Psi_{i} \equiv \frac{-Q_{D}}{C_{i}} = \frac{-Q_{D}}{\varepsilon_{i}} d_{i} \equiv \text{potential across}$$
the insulator

 $-Q_D \equiv -qN_A^-W_d$ = depletion region charge

Flat-band voltage:
$$U_{FB} = \frac{\Delta W_{m/Si}}{q} - \frac{Q_i}{C_i}$$
 \Longrightarrow $U_T = U_{FB} - \frac{Q_D}{\varepsilon_i} d_i + 2\Psi_b$

Voltage required to induce and inversion layer: first must achieve flat-band condition, then accommodate the charge in the depletion region and finally induce the inversion region

- a) accumulation:
 - $C = C_{max} = Ci$
- b) depletion:
 - $1/C = 1/Ci + 1/C_{s}$

C < C_{max}

c) inversion:

low frequencies (< 100 Hz)

 $C = C_{max}$

high frequencies (> 100 Hz)

recombination/regeneration of electron – hole couples cannot keep up with voltage variation

 \rightarrow depletion zone acts as a dielectric

 $C = C_{min}$

MOSFET operation

MOSFET operation

Integration:

$$I_D = K \left(\left(U_G - U_T \right) U_D - \frac{U_D^2}{2} \right)$$

for $U_D < U_G - U_T$ linear region $U_D = U_G - U_T = \text{pinch off}$ inversion channel vanishes \rightarrow depletion remaining

U_D > U_G − U_T = saturation Lenght of channel reduces →Resistance increases → I_D stays constant $I_D = K \frac{(U_G - U_T)^2}{2}$

MOSFET operation

 U_T depends of oxide thickness: small $d_i \rightarrow big C_i \rightarrow small U_T$ limit: electric field strength for break through

ISFETs

Basic Idea: removal of the metal plate of an MOSFET and expose the oxide to an electrolyte

Important: encapsulation of the chip

U_G: Potential applied between reference electrode and earth

Possible Respond mechanisms:

1. Interfacial potential at electrolyte-oxide interface (s.MOSFET)

2. Diffusion of species through the oxide

Diffusion: slow process (d $_{oxide}$ ~1000 A, t ~ 10⁴ s)

no dependence of oxide thickness has been watched

ightarrow not the major respond mechanism

(current drift)

ISFETS EOS-system

Electrolyte/Oxide/Semiconductor Interface

Inner Helmholtz Plane (IHP)

- \cdot Specifically adsorbed ions
- · amphoteric hydroxyl groups

Outer Helmholtz Plane (IHP)

 \cdot closest approach of solvated ions

Diffuse (Gouy-Chapman) Layer

 \cdot diffuse charge region into the bulk electrolyte

ISFETS EOS-system

flat band potential ($\psi_{\rm S}$ =0)

$$U_{FB} = U_{Ref} - \psi_0 + \chi^{sol} - \frac{W_{Si}}{q} - \frac{Q_i}{C_i}$$

 $U_{\text{Ref}} \equiv$ reference electrode potential $\psi_0 \equiv$ potential drop in the electrolyte

Potential drop across:

- Solution (Bulk \rightarrow

diffuse layer \rightarrow OHP \rightarrow IHP

- Oxide /Electrolyte surface dipoles
- Capacitance of the oxide
- Oxide/Semiconductor interface dipoles
- Semiconductor

 $W \equiv Si$ work function

 $Q_i / C_i \equiv$ oxide potential drop

 $\chi^{sol} \equiv$ electrolyte surface dipole potential

ISFETS EOS-system

First Approach: Nernst Equation

Interface between solid (oxide) and liquid (electrolyte)

Equilibrium: $\mu_i^{ox} = \mu_i^{sol}$

Electrochemical Potential in one phase

 $\mu_i = \mu_i^0 + RT \ln a_i + z_i F \Phi$

a_i = activity of component i a_{ox}= 1

Potentialdifference:Galvani Potential

$$\Delta \Phi = \Phi_{sol} - \Phi_{ox} = \Delta \mu_i^0 + RT/F \ln (a_i^{sol})$$

For
$$i = H^+$$
: $U_{interface} = E_0 + RT/F \ln(a_{H^+})$

In real measurements: strong derivations from Nernstian behaviour For good insulators (Si_3N_4 , Al_2O_3) thermodynamic equilibrium between electrolyte and oxide cannot be achieved

pH-sensitivity and Site-Binding Model

Amphoteric behaviour of Oxides

pH-sensitivity and Site-Binding Model

Equilibrium of H⁺ between the oxide surface and the bulk solution Ψo = potential difference between surface and bulk solution = $\Psi s - \Psi b$

 $[H^+]_s$ related to $[H^+]_b$ by equating the electrochemical potential

$$\implies \mu_{H^+}^S + kT \ln[H^+]_S + q \psi_0 = \mu_{H^+}^b + kT \ln[H^+]_b$$

$$[H^+]_S = [H^+]_b \exp\left(\frac{-q \psi_0}{kT}\right) \exp\left(\frac{\mu_{H^+}^b - \mu_{H^+}^S}{kT}\right)$$

$$\implies [H^+]_S = [H^+]_b \exp\left(\frac{-q \psi_0}{kT}\right)$$
Boltzmann...

pH-sensitivity and Site-Binding Model

Number of Surface sites: $N_s = \sum [OH_2^+] + \sum [O^-] + \sum [OH]$ Results in a surface charge $\sigma_0(pH) = \sum [OH_2^+] - \sum [O^-]$

$$\sigma_0 = 0 \rightarrow pH_{pzc} = pH$$
, at which the total surface charge is zero

 $\longrightarrow [M - O^{-}] = [M - OH_2^+]$

With previous equations , this is leading to:

$$2.303 \cdot (\mathrm{pH}_{\mathrm{pzc}} \ - \ \mathrm{pH}) \ = \ \frac{\mathrm{e}\psi_0}{\mathrm{kT}} \ + \ \ln\left(\frac{\left[\mathrm{M} - \mathrm{OH}_2^+\right]}{\left[\mathrm{M} - \mathrm{O}^-\right]}\right)^{\frac{1}{2}}$$

pH-sensitivity and Site-Binding Model

$$-\psi_0 = \frac{\sigma_d}{C_H} + \frac{2kT}{q} \sinh^{-1} \left(\frac{\sigma_d}{\left(8kT\varepsilon\varepsilon_0 n^0 \right)^{1/2}} \right)$$

the in Helmholtz double layer

potential drop in the diffuse layer

when the ion concentration in the solution (n^0) is

 $\psi_{0} = \frac{-\sigma_{d}}{C_{I}} = -\sigma_{d} \left(\frac{1}{C_{II}} + \frac{2kT}{q} \left(8kT\varepsilon\varepsilon_{0}n^{0} \right)^{1/2} \right)$

ISFETS pH-sensitivity and Site-Binding Model

using the charge neutrality equation

$$\sigma_0 + \sigma_d = -(Q_{Si} + Q_i)$$

$$\implies \sigma_0 = -\sigma_d \qquad \sigma_0 = \psi_0 C_d$$

linear relation between surface charge and potential

pH-sensitivity and Site-Binding Model

Leading to an expression for the pH sensitivity of an ISFET

pH-sensitivity and Site-Binding Model

Sensitivity depends on the used oxide material

pH-sensitivity and Site-Binding Model

pH-sensitivity and Site-Binding Model

ENFETs Concept

Functionalisation of oxide surfaces

Deposition of polymeric membranes on the gate insulator

 \rightarrow Matrices for immobilisation of enzymes

Common material: polyvinylchloride (PVC)

Immobilisation mechanisms

- i) entrapment in polymeric network
- ii) entrapment in gel matrix
- iii) crosslinking with multi-functional agent
- iv) covalent bonding to sensor surface

Fig. 4. Methods of enzyme immobilisation: a) entrapment in gel matrix, b) crosslinking with multi-functional agent, c), d) covalent bond with and without bi-functional agent respectively

ENFETs Example

Glucose ENFET

ISFET

Glucose Glucose Gluconic acid Gluconic acid Gox Gox Gox Gox 0, H₂0₂ H₂0₂ 0, local pH change local pH change local pH change SiO₂

Glucose oxidase immobilised at the insulator surface

Reaction in membran layer

Glucose + O_2 + H_2O_2 Glucose oxidase Gluconate + H^+ + H_2O_2

local pH change induced by enzyme biocatalyzed transformations

Detection of pH change with ISFET structure

 \rightarrow Detection of glucose

Control of the pH of a solution = coulometry

Coulometric generation of H⁺ / OH ⁻ by electrochemical reactions at generating electrodes

$$2H_20 + 2e^- \rightarrow H_2 + 2 \text{ OH}^- \quad \text{Reduction} \\ 2H_20 \rightarrow 0_2 + 4e^- + 4 \text{ H}^+ \quad \text{Oxidation}$$

Coulometry is an absolute method of ion generation

Boundary conditions

- i) well known stoichiometry
- ii) no side reactions occur
- iii) Current efficiency ~ 100%

Sensor signal can be adjusted, to induce a defined change of pH

Modified ENFET

Generating platinum electrodes arround gate

Excellent stability of urease \rightarrow ideal sensitive enzyme

Immobilised in polyacrylamide membrane

Limitation for simple ENFET

 $C_{\mbox{\scriptsize buffer}}$, enzyme kinetics and reaction equilibrium depend on pH

ENFET: Strongly nonlinear response

Dynamic range depends on composition of the sample

Sensor/Actuator System:

ENFET measures pH inside membrane

 \rightarrow pH control through coulometric generation of H⁺/OH⁻

Response of ENFET ∂V	$V_{out} / \partial[S] = EB / \beta$
--------------------------------	--------------------------------------

B = sensitivity of ISFET	E = enzymatic sensitivity
β = buffer capacity	[S] = substrate concentration

E > 0 = acidic reaction E < 0 = alkaline reaction

Similar: electrochemical actuator

 $\partial V_{out} / \partial I = AB / \beta$ Small changes in pH: I = current through generating electrode A = sensitivity of sensor-actuator system $\partial V_{\text{out,current}} = -\partial V_{\text{out,enzyme}}$ $\partial I/\partial [S] = -E/A$ independent from buffer Linear response on [S] capacity membrane enzyme urea reaction pН controller actuator V_{set} ISFET Vout

Measurement set-up for the pH-static enzyme sensor

Response of a classical ISFET-based enzyme sensor (open symbols) compared with that of the pH-static sensor (filled symbols) in sample solutions with different buffer

capacity. \blacktriangleright : low buffer; \blacktriangleright : medium buffer; Δ : high buffer

Basic Principle

- Interaction of biological system with a FET structure
- Electrochemical processes in cells
 - Cell membrane: embedded ion channels allow ion transfer
 - Potential drop:
 - action potential: induced change of permeability

Depolarisation

Opening of quick channels \rightarrow Potentialstep in U_{Membrane}

Insect antenna

- Information of [S] is transformed in an electrical signal
- Polarisation in sensing hairs
- Total dipole along the anten
- Receptorpotential →
 action potential

- Coupling of antenna and FET
 - electrolyte
 - constant-Voltage mode: change of antenna potential causes change in FET surface potential
 - local peak in $I_D([S])$

C) Sensorkopf mit Antennenhalter und FET

A) Whole-Beetle-Anordnung

B) isolated-Antenna-Anordnung

 Correlation between peak amplitude and [S] → sensing of [S]

- Possible application
 - Agriculture (Leptinotarsa decemlineata)
 - Fire detection(Phaenops cyanea)

Surface Charge sensitivity DNA sensor

- Gate potential controlled by the electrical charge associated with the gate interface.
- · surface charge sensitivity ?

 $\sigma_0 = \sqrt{8kT\varepsilon\varepsilon_0 n^0} \sinh($

Surface charge density and surface potential

DNA: intrinsic negative charge at sugarphosohate backbone

Probe DNA: bound to PLL surface

- Target DNA: binding to complementary DNA
- →surface charge
- →depletion
- \rightarrow region,potential change

Probe DNA: bound to PLL surface

noncomplementary DNA:

 \rightarrow No binding

Surface Charge sensitivity DNA sensor

Measurment of the differential surface potential enables DNA detection

Direct electrical sign al 1

Advantages of wide-bandgap materials:

i) no generation of unwanted charge carriers (optical, thermal)

ii) Strong chemical bondings \rightarrow mechanical and thermal stability

Sensor concept: modulation of charge carrier density in 2DEG near the AlGaN/GaN interface

Formation of a 2DEG:

Dicontinuity of microscopic dipole density in the wurzite crystal at the AlGaN / GaN interface

Strong electronegativity of N

 \rightarrow dipolemoments along the bondings between Ga – N / Al - N

AlGaN / GaN heterostructure

Different strength of ionic bonds of III-nitrides

Change of macroscopic polarisation P at the
 AIGaN / GaN interface

$$P_{AIGaN} > P_{GaN}$$

Electrostatics Surface charge with
$$\sigma = P$$
 = opposite sign at the two surfaces perpendicular to P

$$\implies E = \sigma / \varepsilon_0(\varepsilon - 1)$$

Internal electric field permanent polarisation

Internal interface: consider $\Delta P = P_{AlGaN} - P_{GaN}$

=

Surface charge $+\sigma$ at AlGaN / GaN Surface charge $-\sigma$ at terminated at AlGaN surface

Interacts with surrounding compensating ions

Surface charge between GaN / substrate interface can be neglected

Potential landscape:

 $+\sigma \implies$ downward bending accumulation of electrons High density n_e ~ 10¹³ cm⁻²

2DEG: seperated from surface through insulating AlGaN layer

 \rightarrow strong confinement

Ion sensitive:

X⁺/X⁻ adsorbed → e⁻ gained / lost in 2DEG affects conductivity / current

Further advantages:

- high signal to noise ratio
- chemically stable
- no toxic to living cells

great potential for physiological measurements (e.g. cell potentials)

Improved heterostructure

n – doped channel: GaN:Si

p – doped bulk: GaN:Mg

 \rightarrow Strong confinement of 2DEG

→ Enhanced sensitivity

PROPERTIES

- large bandgap (5.45 eV)
- H-termination
- O-termination
- good biocompatibility

formation of dipoles

diamond

adsorbate layer

diamond adsorbate layer

- Surface conductivity of H-terminated diamond (Transfer-Doping-Model)
 - air exposure is essential
 - spontaneously formation of acidic water layer
 - redox reaction

```
2 \text{ H}_3\text{O}^+ + 2 \text{ e}^- \Rightarrow \text{H}_2 + 2 \text{ H}_2\text{O}
```

electron transfer into the liquid ($\mu_e < E_F$)

- pH-sensitivity of Oterminated diamond
 - Ozon treatment of Hterminated surfaces
 - amphoteric behaviour
 - $\mathrm{C-OH}\ \rightleftharpoons\ \mathrm{C-O^-}\ +\ \mathrm{H^+}$
 - $C OH + H^+ \rightleftharpoons C OH_2^+$
 - pH-sensitivity:
 site binding model

modulation of 2-D hole gas at Hterminated sites

(a) low pH - reducing accumulation of holes in the channel

(b) high pH - enhancement of hole density in the channel

- Ion Sensitivity (Kawarada,2002)
 - H terminated diamond shows sensitivity to anions and cations

(e.g.Cl⁻ ,l⁻ ,Br ⁻)

- No sensitivity at
- O-terminated surfaces

Not reproducable so far

lateral modulation of the conductive channel

-Н -Н

-0

-H

-H -O

-0

-H -H

(b) crossection

-OH

- pH-sensitive Device
 - Combination of "conducting" H -terminated and "pH -sensitive"
 - O -terminated areas

Conclusions

- ISFET: basis for many bio-/chemical sensors
- Miniaturizing and high integration
- No commercial breakthrough, caused by: – High drift
 - Miniaturization of reference electrodes (insufficient stability)
 - Exposure to corrosive electrolytes (lifetime): improved passivating necessary

References

- [1] P. Bergveld, *ISFET, Theory and Practice*, IEEE Sensor Conference in Toronto (2003)
- [2] P. Bergveld, Thirty years of *ISFETOLOGY What happened in the past 30 years* and what may happen in the next 30 years, Sensors and Actuators B88, 1-20 (2003)
- [3] J. Garrido, *Biochemical Sensors*, Script to the according lecture, Walther Schottky Institute (2005)
- **[4]** S. Nowy, *Diamond based Ion sensitive Field Effect Transistors*, Diploma thesis under supervisor M. Stutzmann and J. Garrido, Walther Schottky Institute (2005)
- **[5]** P. Schroth, *Biosensoren auf der Basis von Hablleiter-Feldeffektstrukturen mit angekoppelten Insektenantennen*, PhD thesis under supervisor H. Lüth and W. Mokwa, RWTH Aachen (2000)
- [6] K.-S. Song, T. Sakai, H. Kanazawa, Y. Araki, H. Umezawa, M. Tachiki and H. Kawarada: *Cl- sensitive biosensor used electrolyte-solution-gate diamond FETs*, Biosensors and Bioelectronics 19, 137 (2003)
- **[7]** G. Steinhoff, M. Hermann, M. Stutzmann, M. Eickhoff, *pH responseof GaN and AlGaN / GaN field effect transistors*, 48. Internationales Wissenschaftliches Kolloquium, Technische Universität Illmenau (2003)
- **[8]** M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C.E. Nebel, J. Schalwig, R. Neuberger, G. Müller, *GaN based heretostructures for sensor applications*, Diamond and Related Materials 11, 886 891(2002)
- [9] S. Sze, *Physics of Semiconductor Devices*, second edition, John Wiley & Sons, 362 391, 430 445 (1985)

THANK YOU FOR YOUR ATTENTION!

Questions?