

Binary Bacterial Toxins

C2- and VIP-Toxin

Michael Leuber

Biotechnology

University Würzburg

Bacterial Toxins

- (1) Porin-like toxins
- (2) Toxins that bind to or modify existing ion channels

(3) Toxins with intracellular target that form
 a channel and translocate a second
 component, i.e. binary toxins

Binary Toxins

- The toxin contains both enzyme
 (A) and transport function (B),
 for example adenylate cyclase
 toxin (ACT, CyaA) of Bordetella
 pertussis.
- Toxin and transport function are secreted separately, e.g. C2and Anthrax toxin

Binary Toxins – Overview

- C2-Toxin*

Julius-Maximilians-

WÜRZBURG

- Iota-Toxin
- Toxin A/B
- Epsilon-Toxin
- Anthrax Toxin
- VIP-Toxin*
- CyaA (ACT)

Clostridium botulinum (A; B) Clostridium perfringens (A; B) Clostridium difficile (A-B) Clostridium perfringens (A?; B) Bacillus anthracis (A1, A2; B) Bacillus thuringiensis (A; B) Bacillus cereus (A; B) Bordetella pertussis (A-B)

Binary Toxins – Our Working Model

Adapted from: Song et al, 1996

Binary Toxins – Our Working Model

Binary Toxins – Our Working Model

Heptameric binding component (B) inserted in artificial bilayer membrane

C2-Toxin of Clostridium botulinum

- First recognized and isolated in 1896 by Emile van Ermengem
- Gram-positive, spore forming, rod-shaped, anaerobic soil bacteria

Center for Disease Control and Prevention, Department of Health and Human Services US

- The spores can survive in most environments and are hard to kill
- C. botulinum produces various types of extremely potent neurotoxins (BoNT). Beside these neurotoxins, certain strains produce the exotoxin C2 and the exoenzyme C3

C2-Toxin of Clostridium botulinum

C2-toxin seems not to be involved in botulism but also acts lethal when applied to animals (LD₅₀ (i.v.) for mice is less than 50 fmol)

Center for Disease Control and Prevention, Department of Health and Human Services US

Main effect after i.v. application is a decrease in vascular barrier functions of the endothelium, resulting in decreased blood pressure and edema

C2-Toxin

- Enzymatic component: C2I
 - 50 kDa protein, 2 domains, ADP-ribosyltransferase activity

Aktories & Barth, 2004

C2-Toxin

- Binding component: C2II
 - 80 kDa protein, 4 domains, distinct homology to other binary toxins' binding components, such as PA, Vip1Ac, lota b, and to β-barrel PFTs like α-Hemolysin.

Intoxication – binding and internalization

C2-Toxin

Intoxication – enzymatic reaction of C2I

Aktories & Barth, 2004

C2-Toxin

Inhibition of intoxication by chloroquine

Titration experiments with chloroquine and related compounds resulted in a decrease of membrane conductance.

 $K_{S} = 44 \ \mu M$

C2-Toxin

Inhibition of intoxication by chloroquine

Chloroquine is able to prevent Vero cells from toxin induced cell rounding and cell death.

 $K_s = 23 \ \mu M$ (% inhibition)

- Biophysical properties
 - Single channel conductance depends on ionic strength of salt solution (single channel conductance in 150mM KCl = 40 pS).
 - Channels are cation-selective (P_{cation}/P_{anion} = 11)
 - Membrane inserted channels bind 4-aminoquinolines, e.g. chloroquine, which blocks the channel. This binding also is ionic strength dependent.
 - Chloroquine is twofold positive charged

Negatively charged amino acids are involved in binding and contribute to biophysical properties.

- Biophysical properties
 - Furthermore binding is asymmetric with respect to the side of addition (binding resulting from addition of chloroquine to the cis side is much stronger).

Binding site is localized inside the vestibule on the cis side of the mushroomshaped heptamer.

Sequence comparison – site-directed mutagenesis

Position of the mutated amino acids inside the prepore

19

→ Single channel conductance of the C2II-mutants

12 sec

	KCI-Konzentration [M]	0,15	1,0
[Sd	Wildtyp	40	130
it G [E272A	35	100
igkei	E280C	45	100
zelkanalleitfäh	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A	13 ± 2	80 ± 11
[sd	D426A	20 ± 8	100 ± 28
t G [F428A	140 ± 18	500
nalleitfähigkei	F428D	110 ± 22	600
	F428Y	60	210
	F428W	5 ± 1	n.b.
zelka	E399A D426A	14±2	n.b.
Ein	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

	KCI-Konzentration [M]	0,15	1,0
[Sq	Wildtyp	40	130
it G	E272A	35	100
zelkanalleitfähigkei	E280C	45	100
	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A	13 ± 2	80 ± 11
pS]	D426A	20 ± 8	100 ± 28
t G []	F428A	140 ± 18	500
Einzelkanalleitfähigkei	F428D	110 ± 22	600
	F428Y	60	210
	F428W	5 ± 1	n.b.
	E399A D426A	14 ± 2	n.b.
	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

	KCI-Konzentration [M]	0,15	1,0
zelkanalleitfähigkeit G [pS]	Wildtyp	40	130
	E272A	35	100
	E280C	45	100
	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A	13 ± 2	80 ± 11
[Sd	D426A	20 ± 8	100 ± 28
t G [F428A	140 ± 18	500
nalleitfähigkei	F428D	110 ± 22	600
	F428Y	60	210
	F428W	5 ± 1	n.b.
zelka	E399A D426A	14±2	n.b.
Ein	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

\rightarrow Single channel conductance of the C2II-mutants

	KCI-Konzentration [M]	0,15	1,0
pS]	Wildtyp	40	130
zelkanalleitfähigkeit G [E272A	35	100
	E280C	45	100
	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ë	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A 🛑	13 ± 2	80 ± 11
Einzelkanalleitfähigkeit G [pS]	D426A 🔵	20 ± 8	100 ± 28
	F428A	140 ± 18	500
	F428D	110 ± 22	600
	F428Y	60	210
	F428W	5±1	n.b.
	E399A D426A	14±2	n.b.
	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

i

	KCI-Konzentration [M]	0,15	1,0
t G [pS]	Wildtyp	40	130
	E272A	35	100
iigkei	E280C	45	100
zelkanalleitfäh	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A 🔴	13 ± 2	80 ± 11
[S]	D426A 🔵	20 ± 8	100 ± 28
t G [F428A	140 ± 18	500
nalleitfähigkei	F428D	110 ± 22	600
	F428Y	60	210
	F428W	5±1	n.b.
zelka	E399A D426A 🔴	14±2	n.b.
Ein	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

\rightarrow Single channel conductance of the C2II-mutants

	KCI-Konzentration [M]	0,15	1,0
zelkanalleitfähigkeit G [pS]	Wildtyp	40	130
	E272A	35	100
	E280C	45	100
	D341A	35	n.b.
	D342C	40	100
	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A	13±2	80 ± 11
[sd	D426A	20 ± 8	100 ± 28
Einzelkanalleitfähigkeit G [r	F428A 🔴	140 ± 18	500
	F428D 🛑	110 ± 22	600
	F428Y 🛑	60	210
	F428W	5 ± 1	n.b.
	E399A D426A	14±2	n.b.
	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

i

	KCI-Konzentration [M]	0,15	1,0
[Sd	Wildtyp	40	130
ţG	E272A	35	100
igkei	E280C	45	100
itfah	D341A	35	n.b.
nalle	D342C	40	100
zelka	E346A	30	125
Ein	D341A E346A	25	100

	KCI-Konzentration [M]	0,15	1,0
	Wildtyp	40	130
	E399A	13±2	80 ± 11
<u>s</u>	D426A	20 ± 8	100 ± 28
<u>פ</u>	F428A	140 ± 18	500
igkei	F428D	110 ± 22	600
littah	F428Y	60	210
nalle	F428W	5±1	n.b.
zelka	E399A D426A 🔴	14±2	n.b.
	E399A F428A	60	n.b.
	D426A F428A	40	370 ± 44
	E399A D426A F428A	30 ± 4	330 ± 55

	KCI-Konzentration [M]	0,15	1,0		
	Wildtyp	40	130		
itfähigkeit G [pS]	E399A	13±2	80 ± 11		
	D426A 🔵	20 ± 8	100 ± 28		
	F428A	140 ± 18	500		
	F428D	110 ± 22	600		
	F428Y	60	210		
Inalle	F428W	5±1	n.b.		
zelka	E399A D426A 🛑	14±2	n.b.		
	E399A F428A	60	n.b.		
	D426A F428A	40	370 ± 44		
	E399A D426A F428A	30 ± 4	330 ± 55		

\rightarrow Selectivity of the C2II-mutants

C2II	Zero-current membrane potential V _m (mV)	Selectivity P _c /P _a
Wildtyp	-	11
E399A •	19	5,6
D426A •	13	3,0
F428A	20	7,0
E399A F428A	19	5,7
D426A F428A	16	4,0
E399A D426A F428A	12	2,5

\rightarrow Selectivity of the C2II-mutants

C2II	Zero-current membrane potential V _m (mV)	Selectivity P _c /P _a
Wildtyp	-	11
E399A •	19	5,6
D426A	13	3,0
F428A •	20	7,0
E399A F428A	19	5,7
D426A F428A	16	4,0
E399A D426A F428A	12	2,5

\rightarrow Selectivity of the C2II-mutants

C2II	Zero-current membrane potential V _m (mV)	Selectivity P _c /P _a
Wildtyp	-	11
E399A •	19	5,6
D426A	13	3,0
F428A	20	7,0
E399A F428A	19	5,7
D426A F428A	16	4,0
E399A D426A F428A	12	2,5

\rightarrow Voltage-dependence of the C2II-mutants

Julius-Maximilians-

Biozentrum

WÜRZBURG

C211	Wt	E272A	E280C	D341A	D342C	E346A	D341A E346A				
	K _s [μM] in 150 mM KCl										
Chloroquin beidseitig	10	5	12	13	5	3	3				

C2II	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
					K _s [μM]	in 150 m	M KCI			
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800

	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
C2II	<u>22ΙΙ</u> K _s [μM] in 150 mM KCI									
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800
Chloroquin cis	10	460	8300	3400	4500	320	180	10800	6600	5700
Chloroquin trans	180	1300	5300	6700	4600	2900	3700	5500	5900	5200

C2II	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
					K _s [μΜ]	in 150 m	M KCI			
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800
Chloroquin cis	10	460	8300	3400	4500	320	180	10800	6600	5700
Chloroquin trans	180	1300	5300	6700	4600	2900	3700	5500	5900	5200

	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
C2					K [uM]	in 150 m				
	8					11 130 11				
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800
Chloroquin cis	10	460	8300	3400	4500	320	180	10800	6600	5700
Chloroquin trans	180	1300	5300	6700	4600	2900	3700	5500	5900	5200

C211	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
					K _s [μΜ]	in 150 m	M KCI			
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800
					К _s [µМ]	in 1M K	CI			
Chloroquin beidseitig	45	110	n.m.	29500	22700	2600	n.m.	n.m.	n.m.	n.m.

	Wt	E399A	D426A	F428A	F428D	F428Y	F428W	E399A D426A	D426A F428A	E399A D426A F428A
K _s [μM] in 150 mM KCl										
Chloroquin beidseitig	10	250	2500	3700	3400	240	170	3700	1900	2800
Quinacrin beidseitig	1,15	100	2300	440	70	70	230	1200	1900	n.m.
Primaquin beidseitig	90	250	n.m.	930	120	420	680	1800	10600	n.m.

Biozentrum

Julius-Maximilians-

WÜRZBURG

→ Summary

Impact on:	E 399A	D426A	F428A	F428Y	F428W	F428D
SDS-stability of oligomers	₽	-		-	-	-
Membrane activity	-	₽	-	-	-	-
Single channel conductance	+ +	++	***	**	+++	**
Ionic-strength-dependence of single channel conductance	+	+	-	-		
Selectivity	++ +	+++	++			
Voltage-dependence	+	+	+	-	-	
Half-saturation-constants (4-aminoquinolone)	††	***	***	**	**	***
Ionic-strength-dependence of 4-aminoquinolone-binding	÷		-	-		-

VIP-Toxins of *Bacillus thuringiensis* (and *B. cereus*)

Biozentrum

RZBURG

- Bacillus thuringiensis was first discovered in flour silos in Thuringia (German federal state) in 1911
- Gram-positive, spore forming, rod-shaped, soil bacteria

Andrup et al., 1996

- Belongs to the family of Bacillaceae, closely related to Bacillus cereus and Bacillus anthracis
- > Pathogen for flour moths (Ephestia kuehniella)

VIP-Toxins of Bacillus thuringiensis

 Bacillus thuringiensis is well known for its insecticidal δ-endotoxins, targeting different corn pests, such as the European corn borer (Ostrinia nubilalis) and the Western corn rootworm (Diabrotica virgifera virgifera LeConte)

http://www.bba.de/veroeff/popwiss/diabrotica.pdf

http://www.syngenta.com

lius-Maximilians-

Department of Biotechnology

VIP-Toxins of Bacillus thuringiensis

- δ-endotoxins
 - Parasporal crystals, produced during sporulation phase of the bacteria
 - Pore-forming proteins, that target the insects' midgut cells and lyse them
 - Already used in transgenic corn since 1996

http://helios.bto.ed.ac.uk/bto/microbes/bt.htm

- Bacillus thuringiensis is also capable of producing insecticidal proteins during its vegetative growth phase
 - \rightarrow <u>V</u>egetative <u>Insecticidal Proteins</u> \rightarrow VIP-Toxins

UNIVERSITÄT WÜRZBURG Biozentrum

Department of Biotechnology

VIP-Toxin

- Binding component: Vip1Ac
 - 96 kDa precursor protein, chymotrypsin cleavage leads to active monomers (66 kDa) that can form oligomers
 - Highly homologous to C2II, PA and other β-barrel PFTs
- Enzymatic component: Vip2Ac
 - 46 kDa protein, 2 domains, ADP-ribosyltransferase activity
 - Highly homologous to C2I and la (*C. perfringens*)
 - ~90 % homology to Vip2 from
 B. cereus AB78

Han *et al*, 1999

VIP-Toxin

Binding component: Vip1Ac

- 1 B. thuringiensis gel-eluted Vip1Ac, native
- 2 B. thuringiensis gel-eluted Vip1Ac, boiled

6 % SDS-PAGE

VIP-Toxin

Binding component: Vip1Ac

VIP-Toxin

Vip1Ac single channel conductance

Electrolyte	Conductance state	Conductance state 2
50 mM KCl		75 pS
150 mM KCl		150 pS
300 mM KCI		200 pS
500 mM KCI	160 pS	300 pS
1 M KCI	350 pS	700 pS
3 M KCI	960 pS	1900 pS
1 M LiCl	160 pS	300 pS
1 M KF	220 pS	400 pS

VIP-Toxin

Vip1Ac voltage-dependence

VIP-Toxin

Vip1Ac voltage-dependence

VIP-Toxin – why so interesting?

- Anion-selective (P_c/P_a = 0.36) channels in artificial lipid bilayers with two conductance states at higher salt concentrations

 ≠ other known binary toxins, e.g. C2- and Anthrax-toxin
- Asymmetric, voltage dependent closure of the channel at high positive voltages applied to the cis side

 ≠ other known binary toxins, e.g. C2- and Anthrax-toxin
- No binding of the enzymatic component Vip2Ac & chloroquine ≠ other known binary toxins, e.g. C2- and Anthrax-toxin

Different mode of interaction despite the high homology to other binary toxins ?

Binary Bacterial Toxins C2- and VIP-Toxin

Thank you for your attention !

Michael Leuber

Biotechnology University Würzburg

References:

Julius-Maximilians-UNIVERSITÄT

- Aktories K and Barth H. (2004) The actin-ADP-ribosylating *Clostridium botulinum* C2 toxin. *Anaerobe*. **10**(2):101-5.
- Andrup L, Jorgensen O, Wilcks A, Smidt L and Jensen GB. (1996) Mobilization of "nonmobilizable" plasmids by the aggregationmediated conjugation system of *Bacillus thuringiensis*. *Plasmid*. **36**(2):75-85.
- Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M and Popoff MR. (2001) Interaction of *Clostridium botulinum* C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds *in vitro* and intoxification *in vivo*. *FASEB J*. **15**:1658-60.
- Blöcker D, Bachmeyer C, Benz R, Aktories K and Barth H. (2003) Channel formation by the binding component of *Clostridium botulinum* C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation *in vivo*. *Biochemistry*. **42**(18):5368-77.
- Han S, Craig JA, Putnam CD, Caroz zi NB ar 1 Tainer JA. (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. *Nat. Struct. Biol.* **6**:932-6.
- Leuber M, Orlik F, Schiffler B, Sickmann A and Benz R. (2006) Vegetative insecticidal protein (Vip1Ac) of *Bacillus thuringiensis* HD201: evidence for oligomer and channel formation. *Biochemistry*. **45**(1):283-8.
- Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K and Benz R. (2007) *Clostridium botulinum* C2 toxin Identification of the Binding Site for Chloroquine and Related Compounds and Influence of the Binding Site on Properties of the C2II Channel *J. Biol. Chem.* Submitted.
- Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H and Gouaux JE. (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. *Science*. **274**:1859-66.