

Department of Biotechnology

Moscow-Bavarian Joint Advanced Student School 2007:

Properties of Channels Formed by Bacterial Porins and Toxins

RTX toxins HlyA of *E.coli* & CyaA of *Bordetella pertussis*

Florian Rohleder – Student of Biology – 16.03.2007

Introduction What is it all about?

- cytolysins represent important virulence factors of many pathogenic bacteria
- most well-known bacterial cytolysins are pore-forming proteins
 - transmembrane pores are cytotoxic and may cause osmotic cell lysis
- bacterial pore-forming cytolysins represent a heterogeneous group of exotoxins
- pore-forming cytolysins of Gram-positive bacteria
 - N-terminal signal peptide that is cleaved during Sec-dependent transport across the cytoplasmatic membrane
 - active per se and do not require any activation
- those of Gram-negative bacteria
 - synthesized as inactive protoxins / activation by modification or proteolytic procession
 - secretion across inner and outer membranes by complex systems
- **RTX toxins** represent the largest family of bacterial pore-forming cytolysins

Department of Biotechnology

03/41

Introduction Lipid Bilayer Membrane and Toxins

- membranes of pure lipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserin) inactive targets
- asolectin (mixture of many different lipids isolated from soy beans) active targets
- reason for "lipid specifity" is not clear

Department of Biotechnology

04/41

Introduction Bacterial Cellwalls

gram negative

gram positive

RTX Toxins General Characteristics I

1.

- synthesized as inactive proteins
- molecular mass typically around 100 120 kDa
- C-terminal half includes tandem array of glycine and aspartate-rich nonapeptide repeats
 - UXGGXG(N/D)DX (U = large hydrophobic, X = arbitrary)
- `RTX toxins' stands for repeats in toxin
- number of repeats varies between 10 and 40

2.

- post-transcriptional activation by modification
- e.g. acylation of specific internal lysine residues

RTX Toxins General Characteristics II

3.

- no cleavable N-terminal signal peptide / secretion not sec dependent
- secretion via type-I pathway
 - direct translocation across inner and outer membran in one step
 - specific, highly conserved export system (ABC exporter)
- target signal for export located within C-terminal ~60 amino acids / not processed during secretion
- 4.
- activity is Ca²⁺ dependent
- Ca²⁺ binds in unknown stoichiometry to signature repeat domain

RTX Toxins General Characteristics III

5.

form transient, cation-selective pores of different sizes in lipid membranes

6.

- genes specifically required for synthesis, activation and secretion are clustered
- the operon typically contains four contiguous genes in the order C-A-B-D
 - A: structural gene of the toxin protein
 - C: activator protein
 - B+D: ABC protein and MFP component of ABC exporter
 - (outer membrane component encoded somewhere else)

Department of Biotechnology

08/41

HIyA Introduction

- one of the best characterized members of RTX toxins
- lyses erythrocytes from many cell types / kills immune cells involved in first-line defence mechanisms
- secondary reactions triggered by passive influx of Ca²⁺

Julius-Maximilians-

WÜRZBURG

Department of Biotechnology

09/41

HIyA Organisation of Operon and Protein

Julius-Maximilians-

Biozentrum

Department of Biotechnology

10/41

HIyA Structure of ToIC and Possibly also of CyaE

Department of Biotechnology

11/41

HIyA Possible Export Mechanism

ToIC is involved in type 1 export of RTX toxins

Department of Biotechnology

12/41

HIyA Single-channel Analysis

Single-channel recording of an asolectin/n-decane membrane in the presence of HIyA of *Escherichia coli*. The aqueous phase contained 150 mM KCI (pH 6) and 100 ng/ml HIyA. The applied membrane potential was 20 mV; $T = 20^{\circ}C$. The toxin forms transient channels with a lifetime of about 2 to 5 s.

Department of Biotechnology

13/41

CyaA Introduction

- key virulence factor of the wooping cough agent *Bordetella pertussis*
- infects the respiratory tract / strictly human pathogen
- protein of 177kDa
- fusion of a cytolysin with a adenylate cyclase enzyme
- member of RTX toxin family of bacterial pore-forming toxins
- targets phagocytes expressing the $\alpha_M \beta_2$ integrin (CD11b/CD18)
- AC domain is delivered into cytosol and catalyzes uncontrolled conversion of cellular ATP to cAMP

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Department of Biotechnology

14/41

CyaA Organisation of Operon and Protein

27 RI IR(

Department of Biotechnology

15/41

△C698: last 698 amino acids removed including repeat region

- in vivo nonhemolytic / in vitro indistinguishable from wild type
- repeats are required for recognition and binding to target cell but not for formation or insertion into lipid bilayer membrane
- no Ca²⁺ required for activity in lipid bilayer membranes

Julius-Maximilians

WÜRZBURG

Department of Biotechnology

16/41

CyaA Mutants and Related Effects II

Only combinations of ACT 1-1490 together with ACT 1006-1706 and 1490-1681 are able to raise the membrane conductance in a calcium dependent manner. The flanking region 1628-1681 is the elicitor for calcium binding and mediates the signal to the adjacent repeats.

Blozentrum

CyaA Mutants and Related Effects III

∆C843: deletion of repeat region and putative activation site (between residues 913 and 1000)

- together with CyaC very low channel-forming activity
- number of channels similar to that of nonactivated CyaA
- no CyaC-mediated activating modification

△AC: deletion of catalytic adenylate cyclase domain

- no influence on the CyaA-induced hemeolysis
- no difference in channel-formation compared with WT

Julius-Maximilians

RZBURG

Department of Biotechnology

18/41

- replacement of hydrophobic region by a linker
- not able to increase conductance of lipid bilayer membrane even at very high protein concentrations (10 µg/ml)
- no insertion

Julius-Maximilians-

WÜRZBURG

Department of Biotechnology

19/41

CyaA Mutants and Related Effects V

repeats: recognition and binding of target cell (Ca²⁺ dependent)

PMS: channel activity

HR: necessary for integration into membrane

AC: adenylate cyclase domain has no influence on hemolytic activity and channel formation

Department of Biotechnology

20/41

CyaA Properties and Effect

- monomer of 177kDa
- organized in different domains
- intoxication of target cell is fast and direct; no endocytosis
- hemolytic activity and intoxication calcium- and calmodulindependent
- current model of ACT intoxication of target cells

Department of Biotechnology

21/41

CyaA Single-Channel Analysis I

22/41

CyaA Single-Channel Analysis II

histogram of the probatility for the occurence of a given conductivity unit observed with membranes formed of asolectin/n-decane in the presence of 10-100ng/ml CyaA purified from *B. pertussis*

> single-channel conductance: 27 pS (1 M KCl, 50 mV, 25°C, 452 single channel events in 10 membranes) > HlyA 1500 pS <

Department of Biotechnology

23/41

CyaA Cation Selectivity I

Salt	с	G	
		CyaA	HlyA
	М	pS	
LiCl	1.0	15	700
NaCl	1.0	18	1200
KCl	0.10	4.8	310
	0.3	11	720
	1.0	27	1500
	3.0	48	3900
RbCl	1.0	29	1700
KCH ₃ COO (pH 7)	1.0	25	1400
Tris-HCl (pH 6)	1.0	ND	240
$CaCl_2$	0.15	8.5	
-	1.0	24	

Department of Biotechnology

24/41

CyaA Cation Selectivity II

- zero-current membrane potential measurements
- asolectin membrans formed in 50 mM KCI
- toxin added to aqueous phase
- incorporation of 100 1000 channels
- addition of KCI to one side (10-fold salt gradient)
- more diluted side becomes postive
- preferential movement of potassium through CyaA channel

Department of Biotechnology

25/41

CyaA Calcium Dependency I

Calcium has no effect on the single-channel conductance of ACT

(1 M KCl, pH 7, 100 ng/ml CyA, 50 mV, 20°C)

The dramatic calcium-mediated increase of the conductance is caused by the generation of new channels and not by the change of the single-channel conductance of the ACT-channels.

Department of Biotechnology

26/41

CyaA Calcium Dependency II

Addition of 0.8 mM Ca²⁺ on cis side causes a steep increase of the conductance

Department of Biotechnology

27/41

CyaA Calcium Dependency III

- 2 affinity classes of calcium binding sites
 - high-affinity
 - low-affinity
- extremely cooperative function of the calcium concentration
 - < 0.8 mM insignificant conductance enhancement
 - 15% increase in Ca²⁺ concentration leads to 50-fold increase of membrane activity

Julius-Maximilians

RZBURG

CyaA Effects of Other Divalent Cations

- 20 mM of Mg²⁺ or Ba²⁺: no effect on membrane conductance
- Sr²⁺: very small increase starting with 3 mM

Julius-Maximilians-

WÜRZBURG

Department of Biotechnology

29/41

CyaA pH-Dependence of Channel Conductance

(1 M KCl, 50 mV at the cis-side)

CyaA Size of Channel

- single-channel conductance considerably lower than HIyA
- cross-section of CyaA smaller
- for small channels precise estimations of radii difficult
 - conductance is not proportional to cross-section
- ions partially dehydrated and interact with channel walls
- observed CyaA-mediated conductance similar to potassium channels of nerve and muscle tissues

- diameter of less than 0.6 - 0.8 nm

- consistent with no detectable channels in Tris-HCI
- osmotical protection by addition of small sugars to external medium (e.g. sucrose, mannitol or arabinose)
- too small to allow passage of even a fully unfolded polypeptide chain
 - alternative model for AC delivery into cell

Julius-Maximilians-

WÜRZBURG

Department of Biotechnology

31/41

CyaA Translocation of AC Domain and Channel Formation I

Toxin	cAMP intoxication $(C_{10_pmol_cAMP} [ng/ml])^b$		Cell lysis (Cell lysis (CL ₅₀ [ng/ml]) ^c	
	AC^{+e}	AC^{-f}	AC^{+e}	AC^{-f}	
CyaA	15 ± 2	ND	171 ± 11	$2,812 \pm 457$	
CyaA-E509K	24 ± 7	ND	112 ± 7	536 ± 47	
CyaA-E509K+E516K	956 ± 117	ND	367 ± 91	485 ± 96	
CyaA-E581K	61 ± 7	ND	97 ± 6	643 ± 56	
CyaA-E570Q	12 ± 2	ND	169 ± 12	>5,000	
CyaA-E581P	20 ± 4	ND	273 ± 47	>5,000	
proCyaA ^g	493 ± 107	Not determined	$6,273 \pm 766$	Not determined	

Results for J774A.1 cells

hydrophobic region (500-700) is also responsible for AC translocation

Julius-Maximilians-

WÜRZBURG

32/41

CyaA Translocation of AC Domain and Channel Formation II

Julius-Maximilians-

WÜRZBURG

33/41

CyaA Translocation of AC Domain and Channel Formation III

Julius-Maximilians-

WÜRZBURG

34/41

CyaA Translocation of AC Domain and Channel Formation IV

CyaA-E509P, CyaA-E516P or CyaA-E581P

Department of Biotechnology

35/41

CyaA Adenylate Cyclase I

- k_{cat} ~ 2000s⁻¹
- 4 discrete regions bind to calcium-loaded eukaryotic calmodulin
- W242 of AC plays a crucial role and makes extensive contacts with the calcium-induced hydrophobic pocket of CaM

Julius-Maximilians

RZBURG

Department of Biotechnology

36/41

- increase of cAMP level accompanied by decrease of ATP
- permeabilization of cell membrane by CyaA could be expected to activate ATP-consuming membrane transporters for ion homeostasis?
- no measurable decrease of ATP level with CyaA-AC⁻

Department of Biotechnology

37/41

CyaA Adenylate Cyclase III

Julius-Maximilians-

WÜRZBURG

Department of Biotechnology

38/41

CyaA Conformational Change of Calmodulin

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Department of Biotechnology

39/41

CyaA Structure of AC Domain

References

Biozentrum

Julius-Maximilians

WÜRZBURG

- Department of Biotechnology, University Würzburg
- Freer, A. (1999) The Comprehensive Sourcebook of Bacterial Protein Toxins (2nd Edition); Academic Press
- Benz et al. (1994) Adenylate Cyclase Toxin (CyaA) of *Bordetella pertussis*, J. Biol. Chem. 269, 27231-27239
- Knapp et al. (2003) Channel Formation in Model Membranes by the Adenylate Cyclase Toxin of *Bordetella pertussis*: Effect of Calcium, Biochemistry, 42, 8077-8084
- Vojtova, J. et al. (2006) *Bordetella* adenylate cyclase toxin: a swift saboteur of host defense, Curr. Opin. Microbiol., 9: 1-7
- Basler, M. (2006) Pore-Forming and Enzymatic Activities of Bordetella pertussis Adenylate Cyclase Toxin Synergize in Promoting Lysis of Monocytes, Infect. Immun. 74, 2207-2214
- Fiser, R. (2006) Third Activity of *Bodetella* Adenylate Cyclase (AC) Toxin-Hemolysin, J. Biol. Chem. 282, 2808 2820
- Some pictures are taken from the internet (Google)

40/41

Department of Biotechnology

41/41

The End

Thank you for your attention.