INNOVATIONS IN SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY

M.S. Maxim Antakov, Igor Burnaevsky

National Research University Moscow Institute of Electronic Technology Biomedical Systems Department

Moscow Bavarian Joint Advanced Student School 2011 March 20-27 2011, Moscow

OVERVIEW

- × 1) Walkthrough on SPECT
- x 2) Introducing with multiplexed measurement systems (MMS)
- × 3) Advances in modeling MMS
- * 4) Introducing with other types of coding devices in MMS
- × 5) Conclusions

WHEN WE HAD TO USE SPECT?

Myocardial perfusion imaging

- Diagnosis of coronary artery disease (CAD) and various cardiac abnormalities.
- + Identifying location, criticality of existing coronary stenosis and degree of coronary artery disease (CAD) in patients with a history of CAD.
- Prognostication (risk stratification) and evaluation of patients that are at risk of having a myocardial or coronary incident. (ex: myocardial infarction, myocardial ischemia, coronary aneurysm, wall motion abnormalities)
- Assessment of viable myocardium in particular coronary artery territory following heart attacks to justify revascularization
- + Post intervention revascularization evaluation of heart.

@ medinovie.com

WHEN WE HAD TO USE SPECT?

Functional brain imaging

- Alzheimer's Disease/Dementia
- Brain Trauma
- Stroke
- Seizures
- Executive Dysfunction
- Obsessive-Compulsive Disorder and Cognitive Rigidity
- Bipolar Spectrum Disorders
- Depression

HOW LONG DOES IT WORKS?

Study	Half-life of radiopharma	Activity (MBq)	Radiation poisoning (μSv)	Rotation (degrees)	Projections	Time / projection (s)	Whole procedure time (min)
Bone scan	6 hours	800	8	360	120	30	60
Myocardial perfusion scan	6 hours	700	7	180	60	25	25
Brain scan	6 hours	555-1110	11	360	64	30	32
Tumor scan	13 hours	400	9	360	60	30	30
White cell scan	67 hours	18	invitro	360	60	30	30

Limit dose 1000 μ Sv / Year

- × 1) Walkthrough on SPECT
- x 2) Introducing with multiplexed measurement systems (MMS)
- × 3) Advances in modeling MMS
- A) Introducing with other types of coding devices in MMS
 - (5) Conclusions

USING OF MMS IN MEDICAL DIAGNOSTIC

WHY CAN'T WE USE LENS

ANOTHER WAY TO CODE RADIATION

Flat radiating object

Opaque plate with a small hole (pinhole)

Ľ

Position sensitive detector (PSD)

Volume radiating object

MULTI-PINHOLE CODED APERTURE (MPCA)

The shadow on the detector is a copy of the coded aperture. Decoding is required

The shadow on the detector represents more difficult picture

CODED APERTURE CONSTRUCTION METHODS

On the basis of one PRS:

Line-by-line method:

Diagonal method:

8

9

On the basis of two PRS:

Self-supporting method:

FOCUSED IMAGES

Focused image of the flat source

Focused image of the volume source in case 3 planes

Focused image of the volume source in case 5 planes

ITERATIVE RECONSTRUCTION METHODS

× Steepest Descent Method

- + Rapid convergence in case of low transparent and small dimensional apertures
 - Slow convergence in other cases

× Directed Divergence Method

- + Rapid convergence in case of special types of test distributions (most part is zeros)
 - Slow convergence in other cases

× Back Projection Method

- + Rapid convergence in all cases (different transparent and dimension, different types of test distributions)
 - Requires large computational time

- × 1) Walkthrough on SPECT
- x 2) Introducing with multiplexed measurement systems (MMS)
- × 3) Advances in modeling MMS
- A) Introducing with other types of coding devices in MMS
 - (5) Conclusions

BIPOLAR MEASUREMENT SCHEME

Focal plane for both coded apertures simultaneously

Focal plane for both coded apertures simultaneously

HOW BIPOLAR SCHEME CAN BE REALIZED

COMPARISON UNI- AND BI- POLAR SCHEMS

MULTIPLANE RECONSTRUCTION

- × 1) Walkthrough on SPECT
- x 2) Introducing with multiplexed measurement systems (MMS)
- × 3) Advances in modeling MMS
 - 4) Introducing with other types of coding devices in MMS
 - 5) Conclusions

HEXAGONAL CODED APERTURES

FOCUSED IMAGES FOR HEX'S

Focused image of the flat source

Focused image of the volume source in case 2 planes

POINT SPREAD FUNCTION FOR HEX'S

POINT SPREAD FUNCTION'S CHARACTERISTICS

FEW EXAMPLES OF PSF

CONCLUSION

- 1. SPECT is one of the most intelligent and promising diagnostic procedure
- 2. Using MMS allows to replace rotating motion by the translating motion, which also can be applied when rotating around object is impossible
- 3. Bipolar measurement scheme double number of measurements but more then five times decrease mean-squared deviation in the iterative algorithms
- 4. Using hexagonal coded apertures is new and promising direction of the MMS development