Treatment of Surfaces with Ions in a Glow Discharge

MB-JASS 2011

Barbara Wegler

Max Schaldach-Stiftungsprofessur für Biomedizinische Technik Friedrich-Alexander-Universität Erlangen-Nürnberg

How to Remove a Contamination Layer from a Surface?

Max Schaldach -Stiftungsprofessur

- chemical methods:
 - chemical etching
 - electro polishing
- physical methods:
 - grinding
 - polishing
 - sputtering

definition:

to cause the atoms of a solid to be removed from the surface by bombardment with atoms in a discharge tube

advantages:

- no residues
- applicable even for complex geometries
- no toxic materials needed
- no waste

disadvantage:

vacuum needed

Max Schaldach -Stiftungsprofessur

Sputtering

Sputtering

Max Schaldach -Stiftungsprofessur

- simple reflection of the incident ion
- creation of secondary electrons
- sputtering of surface atoms
- implantation of the incident ions in a buried layer at the end of the range

Interaction of Ions with Solid Matter

Ratio between nuclear and electronic stopping power

Max Schaldach -Stiftungsprofessur

nuclear stopping of ions in solids

single displacement $E_2 > E_d$ occurs $E_1 > E_d$ and multiple displacements occur $E_2 > E_d$ $E_2 < E_d$ phonon dissipation replacement $E_1 < E_d$, $E_2 > E_d$ collision and phonon and $Z_1 = Z_2$ dissipation $E_1 < E_d$, $E_2 > E_d$ Z_1 becomes and $Z_1 \neq Z_2$ interstitial atom

displacement energy: E_d E₀=E₁+E₂

> Max Schaldach -Stiftungsprofessur

Binary Collision Approximation

Max Schaldach -Stiftungsprofessur

scattering angle of the center of mass system

direction after the hit of the incident ion

direction after the hit of the target atom

energy of the target atom

Interaction Potential

Coulomb Potential:
$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{r}$$

screening of the nucleus surrounding electrons taken into account :

$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{r} \Phi(r)$$

$\Phi(r)$ screening function

The following contributions have to be considered for the potential:

- The classical terms of Coulomb interaction between
 - the nuclei of the particles
 - the electrons of the particles
 - the nuclei and the electrons of the other particle
- Quantum mechanical corrections due to the Pauli principle in the overlapping area and the interaction energy of electrons

universal screening potential:

 $\Phi(x) = 0.1818e^{-3.2x} + 0.5099e^{-0.9423x} + 0.2802e^{-0.4028x} + 0.02817e^{-0.2016x}$

x dimensionless reduced radius

$$x = \frac{r}{a_I}$$

scaling length suggested by Ziegler, Biersack and Littmark, depending on the charges of the involved atoms

$$a_I = 0.8854 \frac{a_0}{Z_1^{0.23} + Z_2^{0.23}}$$

Max Schaldach -Stiftungsprofessur

 $[a_{I}] = 10^{-10} m$

Screening Function

screening potential with radius for many atom pairs

screening potential with reduced radius for many atom pairs

Max Schaldach -Stiftungsprofessur

scattering angle of the center of mass system

direction after the hit of the incident ion

direction after the hit of the target atom

energy of the target atom

Probability of Displacing an Atom

displacement energy threshold for Ni	$\Delta E = E_d = 17 eV$
mass Ni	M _{Ni} =26.982u
mass Ar	M _{Ar} =39.948u
energy of incoming ion	E ₀ =150eV
sin ² (Θ/2)	>0.228
impact parameter p	<1.14*10 ⁻¹⁰ m
lattice parameter a	3.52*10 ⁻¹⁰ m
probability of hitting an ion with more than the displacement energy threshold	33%

Experimental Sputtering Yield

Sputtering yields of nickel at 150eV ion energy vs argon gas pressure

Max Schaldach -Stiftungsprofessur

Depth of Damage

The depth of damage caused to tungsten following bombardment with low energy neon, argon and xenon ions.

Max Schaldach -Stiftungsprofessur

- material of the target
- type of gas
- pressure of gas
- electrical parameters
- temperature of the target

Pressure

Sputtering yields of nickel at 150eV ion energy vs argon gas pressure

Max Schaldach -Stiftungsprofessur

sputtering rate R

Measuring R is difficult because:

- removal of only a few layers
- variations of the gas pressure
- the composition of the gas
- the incident ion flux
- problems due to difficulties in measuring the depth
- compositional changes of the target
- degradation

Max Schaldach -Stiftungsprofessur

Compositional Changes of the Target

Biomedizinische Technik **MSBT**

4

10

sputtering yield Y

- unit: atoms/ ion or grams/ion
- assumption for the calculation of N_i: one argon ion is generated by one electron
- assumption: pure material without contamination

 $Y = \frac{N_s}{N_i} = \frac{\text{number of removed atoms from the target}}{\text{number of injected ions}}$

$$N_i = \frac{I \cdot t}{Q_{e^-}} = \frac{\text{current} \cdot \text{time}}{\text{charge of } e^-}$$

 $N_{S} = \frac{\Delta m \cdot N_{A}}{M_{mol}} = \frac{\text{change of mass} \cdot \text{Avogadro constant}}{\text{molar mass}}$

Sputtering Yield

Sputtering yield of MgO by a) He and b) Ar ion beams. The solid lines correspond to the fitted function to the measured data.

> Max Schaldach -Stiftungsprofessur

Sputtered Aluminum Samples

SEM micrographs of sputtered aluminum covered with an oxide layer (0.2mbar Ar, 400°C) after a) 30min, b) 45min, c) and d) 60min

Max Schaldach -Stiftungsprofessur

THE DEVIL IS IN THE DETAILS

Max Schaldach -Stiftungsprofessur