Approximating the Orthogonal Knapsack Problem for Hypercubes

Rolf Harren

University of Dortmund
2007.09.07

Outline

Introduction- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- Generalization

4 Summary

Outline

(1) Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- Generalization
(4) Summary

Multidimensional Orthogonal Packing Problems

Input:
d-dimensional cuboid items a_{1}, \ldots, a_{n}

Objective:
an orthogonal, non-rotational and non-overlapping packing into a given space such that...

Multidimensional Orthogonal Packing Problems

Bin Packing

...the number of bins is minimized

Strip Packing
...the total height is minimized

Knapsack Packing ...the profit of the packed selection of items is maximized

Orthogonal Knapsack Packing for Hypercubes

Considered problem

All items are squares, cubes or hypercubes $0<a_{1}, \ldots, a_{n} \leq 1$ Items have profits p_{i}
Bin has unit size

Results

	BIN PACKING		STRIP PACKING	
2-dim	$1.525 .$. APX-complete	Bansal, Correa, Sviridenko	AFPTAS	Kenyon, Rémila
3-dim	$3.382 .$.	$1.691 .$.	Bansal, Han, Iwama Sviridenko, Zhang	
d-dim	open			

Results

	BIN PACKING		STRIP PACKING	
2- dim	$1.525 .$. APX-complete	Bansal, Correa, Sviridenko	AFPTAS	Kenyon, Rémila
3- dim	$3.382 .$.	$1.691 .$.	Bansal, Han, Iwama Sviridenko, Zhang	
d- dim	open		open	

	Hypercube BIN PACKING		Hypercube STRIP PACKING
2-dim	APTAS	Bansal, Correa, Kenyon, Sviridenko	AFPTAS
d- dim	APTAS	Bansal, Correa, Kenyon, Sviridenko	APTAS

Results

	KNAPSACK PACKING		
	General		Hypercube
2- dim	$2+\epsilon$	Jansen, Zhang	$\frac{5}{4}+\epsilon$
3- dim	$7+\epsilon$ APX-complete	Diedrich, H., Jansen Thöle, Thomas	$\frac{9}{8}+\epsilon$
d- dim	open	$\frac{2^{d}+1}{2^{d}}+\epsilon$	

Further results exist on
PACKING WITH LARGE RESOURCES,
MAXIMIZING THE VOLUME,
MAXIMIZING THE NUMBER,

Results

	KNAPSACK PACKING		
	General		Hypercube
2- dim	$2+\epsilon$	Jansen, Zhang	$\frac{5}{4}+\epsilon$
3- dim	$7+\epsilon$ APX-complete	Diedrich, H., Jansen Thöle, Thomas	$\frac{9}{8}+\epsilon$
d- dim	open	$\frac{2^{d}+1}{2^{d}}+\epsilon$	

Further results exist on

PACKING WITH LARGE RESOURCES, MAXIMIZING THE VOLUME, MAXIMIZING THE NUMBER, ...

Open Question

NP-Completeness

It is unknown for all previous packing problems whether the restriction to Hypercube packing is NP-hard for $d \geq 3$.

Applications

Cutting Problems

All packing problems can be seen as cutting problems, e.g., cutting textile or wood

Transportation Industry

- Arranging container on a ship
- Arranging items inside a container

Applications

Cutting Problems

All packing problems can be seen as cutting problems, e.g., cutting textile or wood

Transportation Industry

- Arranging container on a ship
- Arranging items inside a container

Applications

Advertisement Placement

- Arranging ads in a newspaper
- Arranging ads on a flash page

Scheduling
 - Bounded running time on a computer with a grid layout for the processors
 - Tasks need a fixed running time on a rectangular grid of processors

Applications

Advertisement Placement

- Arranging ads in a newspaper
- Arranging ads on a flash page

Scheduling

- Bounded running time on a computer with a grid layout for the processors
- Tasks need a fixed running time on a rectangular grid of processors

Outline

(9) Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- GeneralizationSummary

NFDH

Next-Fit-Decreasing-Height (NFDH) is a very efficient layer based packing algorithm for small items

Lemma

For small items $a_{i} \leq \delta$, the unfilled volume is bounded by δd

Gaps in a Packing

Lemma

Given a packing P of m squares we can partition the free space into at most $3 m$ rectangles

At least one item in P has to be aligned to the bottom of the bin

Shifting Technique

> Lemma
> For small items $a_{i} \leq \delta$ it is possible to free a given line L by shifting the items into a gap losing not more than $O(\delta) p(I)$ of the profit.

Shifting Technique

Lemma

For small items $a_{i} \leq \delta$ it is possible to free a given line L by shifting the items into a gap losing not more than $O(\delta) p(I)$ of the profit.

Rectangle Packing with Large Resources

If the bin is much bigger than the items we can derive a good approximation ratio

Lemma

There is an approximation algorithm for RECTANGLE PACKING into a bin $B=(a, b)$ where $a=1$ and $b \geq \frac{1}{\epsilon^{4}}$ with approximation ratio $(1+\epsilon)$

- Bin has strip-like shape
- Pack a selection of items with the AFPTAS for Strip PACKING and apply a shifting technique to the overhang

Rectangle Packing with Large Resources

If the bin is much bigger than the items we can derive a good approximation ratio

Lemma

There is an approximation algorithm for RECTANGLE PACKING into a bin $B=(a, b)$ where $a=1$ and $b \geq \frac{1}{\epsilon^{4}}$ with approximation ratio $(1+\epsilon)$

Idea:

- Bin has strip-like shape
- Pack a selection of items with the AFPTAS for Strip Packing and apply a shifting technique to the overhang

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything TogetherHypercube Packing
- GeneralizationSummary

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything TogetherHypercube Packing
- GeneralizationSummary

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{\text {opt }}$
- $M_{i}=\left\{s \in I_{\text {opt }}: s \in\left[\alpha_{i+1}, \alpha_{i}[\}\right.\right.$ for $1 \leq i \leq r$
- $\Rightarrow \exists i^{*} \in\{1, \ldots, r\}$ with $p\left(M_{i^{*}}\right) \leq \epsilon \cdot p\left(I_{o p t}\right)$

Large, medium and small items

- $L_{\text {ont }}:=\left\{s \in I_{\text {ont }}: s>\alpha_{i^{*}}\right\}$
- $M:=M_{i}$
- $S:=\left\{s \in I: s<\alpha_{i^{*}+1}\right\}$

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{\text {opt }}$

Large, medium and small items

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{\text {opt }}$

Large, medium and small items

- $M:=M_{i}$

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{o p t}$
- $M_{i}=\left\{s \in I_{\text {opt }}: s \in\left[\alpha_{i+1}, \alpha_{i}[\} \quad\right.\right.$ for $1 \leq i \leq r$
\Rightarrow

Large, medium and small items

- $M:=M_{i}$
- $S:=\left\{\boldsymbol{s} \in l: s<\alpha_{i^{*}+1}\right\}$

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{\text {opt }}$
- $M_{i}=\left\{s \in I_{o p t}: s \in\left[\alpha_{i+1}, \alpha_{i}[\} \quad\right.\right.$ for $1 \leq i \leq r$
- $\Rightarrow \exists i^{*} \in\{1, \ldots, r\}$ with $p\left(M_{i^{*}}\right) \leq \epsilon \cdot p\left(l_{o p t}\right)$

Large, medium and small items

- $L_{\text {opt }}:=\left\{s \in I_{\text {opt }}: s \geq \alpha_{i^{*}}\right\}$

- $S:=\left\{s \in I: s<\alpha_{i^{*}+1}\right\}$

Separation

A little bit technical...

Separation

- Let $r=\left\lceil\frac{1}{\epsilon}\right\rceil$ and $\alpha_{0}=\epsilon, \alpha_{i+1}=\alpha_{i}^{4} \epsilon$
- Divide (unknown) optimal solution $I_{\text {opt }}$
- $M_{i}=\left\{s \in I_{\text {opt }}: s \in\left[\alpha_{i+1}, \alpha_{i}[\}\right.\right.$ for $1 \leq i \leq r$
- $\Rightarrow \exists i^{*} \in\{1, \ldots, r\}$ with $p\left(M_{i^{*}}\right) \leq \epsilon \cdot p\left(l_{o p t}\right)$

Large, medium and small items

- $L_{\text {opt }}:=\left\{s \in I_{\text {opt }}: s \geq \alpha_{i^{*}}\right\}$
- $M:=M_{i^{*}}$
- $S:=\left\{s \in I: s<\alpha_{i^{*}+1}\right\}$

Separation

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^{*}}$)

Small items are small (i.e., $<\alpha_{i^{*}+1}$)
 Medium items are unimportant (i.e., $p(M) \leq \epsilon \cdot \mathrm{OPT}(I)$).

Separation

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^{*}}$)

Small items are small (i.e., $<\alpha_{i^{*}+1}$)

Medium items are unimportant (i.e., $p(M) \leq \epsilon \cdot$ OPT(I)).

Separation

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^{*}}$)

Small items are small (i.e., $<\alpha_{i^{*}+1}$)

Medium items are unimportant (i.e., $p(M) \leq \epsilon \cdot \mathrm{OPT}(I)$).

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- GeneralizationSummary

Enumeration

Enumeration

- All relevant values are constant:

$$
r, \alpha_{i} \text { and } i^{*} \in\{1, \ldots, r\}
$$

- at most $\frac{1}{\alpha_{i *}^{2}}$ large items fit into the bin (volume argument)
- try all values for i^{*} and all possible selection of $\leq \frac{1}{\alpha_{i *}^{2}}$ large items
we assume i^{*} and an optimal packing of the large items are known

Enumeration

Enumeration

- All relevant values are constant:

$$
r, \alpha_{i} \text { and } i^{*} \in\{1, \ldots, r\}
$$

- at most $\frac{1}{\alpha_{i *}^{2}}$ large items fit into the bin (volume argument)
- try all values for i^{*} and all possible selection of $\leq \frac{1}{\alpha_{i x}^{2}}$ large items
we assume i^{*} and an optimal packing of the large items are known

Enumeration

Enumeration

- All relevant values are constant:

$$
r, \alpha_{i} \text { and } i^{*} \in\{1, \ldots, r\}
$$

- at most $\frac{1}{\alpha_{i^{*}}^{2}}$ large items fit into the bin (volume argument)
- try all values for i^{*} and all possible selection of $\leq \frac{1}{\alpha_{i^{*}}^{2}}$ large items
we assume i^{*} and an optimal packing of the large items are known

Enumeration

Enumeration

- All relevant values are constant:

$$
r, \alpha_{i} \text { and } i^{*} \in\{1, \ldots, r\}
$$

- at most $\frac{1}{\alpha_{i^{*}}^{2}}$ large items fit into the bin (volume argument)
- try all values for i^{*} and all possible selection of $\leq \frac{1}{\alpha_{i^{*}}^{2}}$ large items
we assume i^{*} and an optimal packing of the large items are known

Unfilled Volume

At most $3 m$ gaps
 Unfilled volume per gap $\leq 2 \delta$

Unfilled Volume

At most $3 m$ gaps

 Unfilled volume per gap $\leq 2 \delta$
Unfilled Volume

Adding small items with Next-Fit-Decreasing-Height

$$
\begin{aligned}
& \text { Unfilled volume } \leq \overbrace{3 m}^{\text {number of gaps }} \cdot \overbrace{2 \delta}^{\text {unfilled volume per }} \\
& \leq 3 \cdot \frac{1}{\alpha_{i^{*}}^{2}} \\
&=3 \cdot \frac{1}{\alpha_{i^{*}}^{2}} \\
& \cdot \\
& 2 \alpha_{i^{*}+1} \\
& \leq \alpha_{i^{*}}^{4} \epsilon
\end{aligned}
$$

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- GeneralizationSummary

3 Methods

- Enough remaining space
- Several large items
- Only one very large item

Enough Remaining Space $\operatorname{Vol}\left(L_{o p t}\right) \leq 1-\alpha_{i^{*}}$

Enough Remaining Space $\operatorname{Vol}\left(L_{o p t}\right) \leq 1-\alpha_{i^{*}}$

Enough Remaining Space $\operatorname{Vol}\left(L_{o p t}\right) \leq 1-\alpha_{i^{*}}$

Several Large Items

Several Large Items

Profit $P_{1} \geq k \cdot p_{k}$
Profit $P_{2} \geq p\left(L_{\text {opt }} \cup S^{\prime}\right)-p_{k}$

$\max \left(P_{1}, P_{2}\right) \geq\left(\frac{k}{k+1}-O(\epsilon)\right) \mathrm{OPT}(I)$

Several Large Items

Profit $P_{1} \geq k \cdot p_{k}$
Profit $P_{2} \geq p\left(L_{\text {opt }} \cup S^{\prime}\right)-p_{k}$

$$
\max \left(P_{1}, P_{2}\right) \geq\left(\frac{k}{k+1}-O(\epsilon)\right) \mathrm{OPT}(I)
$$

Only One Very Large Item $a_{\max } \geq 1-\epsilon^{4}$

Use Rectangle Packing with Large Resources for the free space

$$
p\left(L_{\text {opt }} \cup S^{\prime}\right) \geq(1-O(\epsilon)) \mathrm{OPT}(I)
$$

Only One Very Large Item $a_{\max } \geq 1-\epsilon^{4}$

Use Rectangle Packing with Large Resources for the free space

$$
p\left(L_{o p t} \cup S^{\prime}\right) \geq(1-O(\epsilon)) \mathrm{OPT}(I)
$$

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- GeneralizationSummary

Putting Everything Together

We derived methods for
Case 1 Enough remaining space $(1-O(\epsilon)) \mathrm{OPT}(I)$ Case 2 Several large items Case 3 Only one very large item

We show that $k<4$ can be reduced to Case 1 or Case 3

Main Idea

Three similarly large squares cannot fill a square bin almost completely

Outline

(1) Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- GeneralizationSummary

Methods for Hypercube Packing

Direct adoption of 2-dim methods
 With suitable separation parameters
 Case 1 Enough remaining space
 Case 2 Several large items
 work as well

More work needed

For Case 3 we need an approximation algorithm for Orthogonal Knapsack Packing with Large
Resources For Hypercubes
with ratio $(1+\epsilon)$ if the bin is big enough

Methods for Hypercube Packing

Direct adoption of 2-dim methods
With suitable separation parameters
Case 1 Enough remaining space
Case 2 Several large items
work as well

More work needed

For Case 3 we need an approximation algorithm for Orthogonal Knapsack Packing with Large Resources for Hypercubes
with ratio $(1+\epsilon)$ if the bin is big enough

Wellstructured Packing

$a_{\text {max }}$ big enough

Construction of a Wellstructured Packing

$a_{\text {max }}$ big enough

Packing the Small Items

Applying the algorithm for Orthogonal Knapsack Packing

 with Large Resources for Hypercubes

Improving Approximation Ratio

Seven similarly large cubes cannot fill a cube bin almost completely

In general
For d-dim Hypercube Packing, we can reduce Case 2 with $k<2^{d}$ to Case 1 or Case 3

Improving Approximation Ratio

Seven similarly large cubes cannot fill a cube bin almost completely

In general

For d-dim Hypercube Packing, we can reduce Case 2 with $k<2^{d}$ to Case 1 or Case 3

Outline

Introduction

- Problem
- Preparation
(2) Square Packing
- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
(3) Hypercube Packing
- Generalization

4 Summary

Summary

Result

We developed an approximation algorithm with approximation ratio $1+\frac{1}{2^{d}}+\epsilon$ for d-dimensional ORTHOGONAL KNAPSACK Packing for Hypercubes

Main Steps

- Separation of large, medium and small items
- Packing the large items
- Adding the small items
- "Three similarly large squares cannot fill a square bin almost completely"

Summary

Result

We developed an approximation algorithm with approximation ratio $1+\frac{1}{2^{d}}+\epsilon$ for d-dimensional ORTHOGONAL KNAPSACK Packing for Hypercubes

Main Steps

- Separation of large, medium and small items
- Packing the large items
- Adding the small items
- "Three similarly large squares cannot fill a square bin almost completely"

Additional notes

Practical application of this algorithm

The running time is dominated by huge enumerations, making the algorithm practically unusable.

Asymptotic behavior
 The structure of the problem does not allow asymptotic algorithms. Neither in the size of the input, nor in the value of an optimal solution.

Additional notes

Practical application of this algorithm

The running time is dominated by huge enumerations, making the algorithm practically unusable.

Asymptotic behavior

The structure of the problem does not allow asymptotic algorithms. Neither in the size of the input, nor in the value of an optimal solution.

Thanks for your attention

