
On Euclidean Vehicle Routing with Allocation

Jan Remy Reto Spöhel∗ Andreas Weißl

Institute of Theoretical Computer Science
ETH Zürich, 8092 Zürich, Switzerland
{jremy|rspoehel|aweissl}@inf.ethz.ch

Abstract. The (Euclidean) Vehicle Routing Allocation Problem (VRAP) is
a generalization of Euclidean TSP. We do not require that all points lie on the salesman
tour. However, points that do not lie on the tour are allocated, i.e., they are directly
connected to the nearest tour point, paying a higher (per-unit) cost. More formally,
the input is a set of points P ⊂ Rd and functions α : P → [0,∞) and β : P → [1,∞).
We wish to compute a subset T ⊆ P and a salesman tour π through T such that the
total length of the tour plus the total allocation cost is minimum. The allocation cost
for a single point p ∈ P \ T is α(p) + β(p) · d(p, q), where q ∈ T is the nearest point on
the tour. We give a PTAS with complexity O

(
n logd+3 n

)
for this problem. Moreover,

we propose a O (n polylog (n))-time PTAS for the Steiner variant of this problem. This
dramatically improves a recent result of Armon et al. [3].

1. Introduction

Let P ⊂ R2 denote a set of points in the plane, and let penalty functions α : P → [0,∞) and
β : P → [1,∞) be given. A solution to the (Euclidean) Vehicle Routing Allocation Problem
(VRAP) is a subset of tour points T ⊆ P and a tour π through T . Each allocation point p ∈ A :=
P \ T is allocated to the nearest tour point q ∈ T at a cost of α(p) + β(p) · d(p, q). We wish to
minimize the length of the tour plus the total allocation cost, i.e., we minimize

val (T, π) =
∑
{p,q}∈π

d(p, q) +
∑
p∈A

(
α(p) + β(p) min

q∈T
d(p, q)

)
.

Throughout, let T ∗ ⊆ P and π∗ denote an optimal choice for T and π, i.e., val (T ∗, π∗) is minimum.

VRAP is motivated by vehicle routing. For instance, each point represents a bank and we wish to
transport cash to the banks using an armored vehicle. The vehicle can visit each bank (which would
be a shortest salesman tour), but it might be cheaper to visit only some of the banks while the staff
of the other banks have to pick up the cash at the visited banks. Although the total distance is
smaller, this way of cash transportation is more risky and needs additional insurance (which can be
modeled using the functions α and β).

Observe that VRAP becomes the well-known Euclidean traveling salesman problem (TSP) if we
have β(p) > 2 for all p ∈ P , since by the triangle inequality it is always cheaper to include a given
point on the tour than to allocate it. As VRAP includes TSP as a special case, we know that
VRAP is NP-hard, even in the strong sense (cf. [9]). With NP-hardness at hand approximation
algorithms are of interest. A polynomial time approximation scheme (PTAS) is an algorithm that
for any fixed ε > 0 approximates the optimum within a factor of (1 + ε) in time polynomial in n.
Note that the complexity of a PTAS might be exponential in 1/ε.

∗The author was supported by Swiss National Fund, SNF grant 200021-108158.
A preliminary version of this paper appeared in the proceedings of the 10th International Workshop on Algorithms
and Data Structures (WADS’07) [14].

1



2

In this paper we show that VRAP admits a PTAS. As our main result, we propose a randomized
nearly-linear time approximation scheme.

Theorem 1. There is a randomized PTAS for VRAP with time complexity O
(
n log5 n

)
.

Moreover, we consider the problem Steiner VRAP where we are allowed to include additional
points on the tour and allocate to these in order to further reduce the cost. A solution (T, S, π) to
Steiner VRAP consists of point sets T ⊆ P and S ⊂ R2, and a salesman tour π through T

.
∪ S.

With A := P \ T as before, we wish to find T ∗, S∗ and π∗ minimizing

val• (T, S, π) =
∑
{p,q}∈π

d(p, q) +
∑
p∈A

(
α(p) + β(p) min

q∈T .∪S
d(p, q)

)
. (1)

Theorem 2. There is a randomized PTAS for Steiner VRAP with time complexity O
(
n logO(1/ε) n

)
.

Theorem 2 improves a recent result of Armon et al. [3], where the authors give a randomized PTAS
with complexity O

(
nO(1/ε)

)
for a problem called Purchase Cooperative TSP, which is the

special case of Steiner VRAP where α(p) = 0 and β(p) = 1 for all points p ∈ P . Their algorithm
seems to extend to Steiner VRAP as long as β(p) = β(q) for all p, q ∈ P .

Both our algorithms extend to the case when P ⊂ Rd for some fixed dimension d.

Theorem 3. In any fixed dimension d, there is a randomized PTAS for VRAP with time complexity
O
(
n logd+3 n

)
.

Theorem 4. In any fixed dimension d, there is a randomized PTAS for Steiner VRAP with time
complexity O

(
n logξ(d,ε) n

)
, where ξ(d, ε) = O(

√
d/ε)d−1.

Moreover, both algorithms can be derandomized, increasing their complexity to O
(
nd+1 logd+3 n

)
and O

(
nd+1 logξ(d,ε) n

)
respectively. Lastly, if β(p) = β(q) for all p, q ∈ P , the running time of our

PTAS for VRAP can be reduced by a factor of O (log n), yielding a complexity of O
(
n log4 n

)
for

the two-dimensional case.

Our methods. Essentially, we prove Theorem 1 by combining the adaptive dissection technique
due to Kolliopoulos and Rao [11] with dynamic programming on r-vapid graphs, as proposed by
Rao and Smith [13].

The adaptive dissection technique is used for estimating allocation costs. Its main advantage over
the well-known quad tree based methods introduced by Arora [4] is that it allows us to work with
only a constant (instead of logarithmic) number of portals per rectangle. This improvement is
achieved by two key ideas: On the one hand, the location of the tour points is guessed by dynamic
programming, and if their bounding box is small, the zoom tree – which replaces the quad tree –
zooms directly in the ‘region of interest’, potentially skipping many levels in between. On the other
hand, in the resulting near-optimal portal-respecting solution, a point is not necessarily allocated to
its nearest point, but possibly to a different nearby tour point. This added flexibility turns out to
be of advantage. It is worth pointing out that – in contrast to Arora’s technique – in the adaptive
dissection framework it is necessary to allocate many points simultaneously to the same tour point,
since allocating them individually would be too time-consuming. This can be done using range
searching techniques (see e.g. [1]).

To estimate the tour length, we transfer ideas presented in [13] for Euclidean TSP from the quad
tree setting to the zoom tree setting. To compute a Euclidean spanner quickly, we use the algorithm
by Gudmundsson et al. [10].



3

In order to prove Theorem 2, we make use of a relatively simple geometric observation and employ
standard quad tree techniques developed in [4] and [5].

Related Work. It is well-known that Euclidean TSP admits a PTAS [4, 12], even one with com-
plexity O (n log n) [13]. VRAP was introduced in 1996 by Beasley and Nascimento [7] as a network
problem, i.e., instead of points in the plane we have a weighted graph as input. In more recent
literature, the network version of the problem is usually called Median Cycle or Ring Star.
References can be found in [16]. Applications of VRAP in bookmobile routing [8] and grass-mower
scheduling [15] have been reported.

As mentioned above, a related problem called Purchase Cooperative TSP was recently studied
by Armon et al. [3] in both the network and Euclidean setting. Using methods of Arora [4], they
proposed a PTAS with complexity O

(
nO(1/ε)

)
for this problem. In addition, they studied several

variants of the problem. As those variants are quite different from VRAP and Steiner VRAP, we
refer to [3] for details.

Organization of this Paper. In Section 2 we show that it is sufficient to consider instances with
input points that lie on a O (n/ε) × O (n/ε) integer grid. In Section 3 we introduce the concepts
of zoom trees and portal-respecting distances, following Kolliopoulos and Rao [11]. In Section 4, we
adapt the notion of r-vapid graphs due to Rao and Smith [13] to our purposes. In Section 5 we
describe and analyze our PTAS for VRAP, and in Section 6 we outline how to improve the PTAS
for Steiner VRAP proposed by Armon et al. [3]. In closing, we discuss the generalization to
higher dimensions and explain how our algorithms can be derandomized in Section 7.

2. Perturbation

In this section we argue that we may restrict our attention to instances in which the input points
have odd integral coordinates and the sidelength of the bounding box is a power of 2 and order of
n/ε. We start with a simple but (throughout this paper) important observation: every input point
p with β(p) > 2 is in every optimal solution a tour point due to the triangle inequality. With this
fact at hand, we can prove the following statement.

Lemma 5. To prove Theorem 1 it suffices to consider only instances with P ⊆ {1, 3, 5, . . . , L−1}2,
where L = 2τ for the smallest τ such that 2τ ≥ 40n/ε.

Proof. First, observe that we may assume w.l.o.g. that P ⊆ [0, C]2 for an appropriate C, and that
there exist points (0, y1) ∈ P and (C, y2) ∈ P . Moreover, rescaling the coordinates by any factor
does not change the structure of an optimal solution to P . Hence, for any L > 0 we may assume
that P ⊆ [0, L]2, and that any solution for P has cost at least L.

Now fix L as in the lemma, and construct a point set P ′ from P by moving every point in P to the
closest point with odd integer coordinates. Let (T ∗, π∗) denote an optimal solution for P and (T, π)
an optimal solution for the modified point set P ′. As the distance between a point in P and its
copy in P ′ is at most 2, all distances increase at most by 4. Moreover, since in the optimal solution
only points p with β(p) ≤ 2 are allocated, the cost increases by at most 4 per tour edge and 8 per
allocation edge. In total, val (T ∗, π∗) increases at most by 8n since the number of edges in (T ∗, π∗)
is at most n. Thus, we have

val (T, π) ≤ val (T ∗, π∗) + 8n.

Similarly, we can easily transform an optimal solution (T ′, π′) for P ′ into a solution (T̃ , π̃) for P
such that

val
(
T̃ , π̃

)
≤ val

(
T ′, π′

)
+ 8n.



4

Applying a PTAS with ε′ = ε/2 to the shifted instance P ′, we obtain a solution (T ′, π′) satisfying

val
(
T ′, π′

)
≤ (1 + ε/2) val (T, π) .

Assuming that ε ≤ 1, it follows for the corresponding solution (T̃ , π̃) of the original problem P that

val
(
T̃ , π̃

)
≤ (1 + ε/2) (val (T ∗, π∗) + 8n) + 8n

≤ (1 + ε/2) val (T ∗, π∗) + 20n
≤ (1 + ε) val (T ∗, π∗) ,

where the last inequality holds due to val (T ∗, π∗) ≥ L ≥ 40n/ε. As the perturbation described
above can be accomplished in linear time, the existence of a randomized O

(
n log5 n

)
time PTAS

for shifted instances implies Theorem 1. �

We henceforth assume that P ⊆ {1, 3, . . . , L− 1}2, where L = O (n/ε) is a power of two. Those
assumptions will be crucial to the proofs.

3. Zoom Trees and Portal-Respecting Allocations

In this section we mainly simplify concepts appearing in [11], defining a certain distance measure
between an allocated point p and the set of tour points T . This distance measure is defined with
respect to a dissection tree, called a zoom tree, which adapts to a given solution to VRAP. The main
result of this section is that, in expectation, this distance measure approximates the real allocation
costs quite closely.

3.1. Concepts and Results. For fixed a, b ∈ {0, 2, ..., L− 2}, let Ga,b(i) denote a grid of granular-
ity 2i with origin (a, b), i.e., the vertical and horizontal grid lines have coordinates

{
a+ j2i : j ∈ Z

}
and

{
b+ j2i : j ∈ Z

}
, respectively. Let i0 denote the smallest integer such that L = 2i0 ≥ 40n/ε,

and let Q0 := (a, b) + [−L,L]2 denote the square of sidelength 2L with center (a, b). Note that
P ⊂ Q0. Throughout this paper, we denote for any rectangle R ⊂ R2 by |R| its sidelength, that is,
the length of the longer sides of R.

For 1 ≤ i ≤ i0, a rectangle R is said to be i-allowable if and only if it satisfies the following
properties.

– R lies in Q0 and is bounded by lines of Ga,b(i).
– If i ≥ 2 then 7 · 2i ≤ |R| < 7 · 2i+1.

If i = 1 then |R| < 7 · 2i+1 = 28.

We say that i is the level of R. Note that |R| = Θ(2i). R is said to be allowable if there exists an
i, 1 ≤ i ≤ i0, such that R is i-allowable.

Observation 6. The aspect ratio of an allowable rectangle is bounded by 14, and the (non-empty)
intersection of two allowable rectangles is an allowable rectangle.

Moreover, we have the following Lemma, which will be useful when arguing about running times.

Lemma 7.

(i) There are O (n log n) allowable rectangles that contain at least one point of P .
(ii) There are O

(
n log2 n

)
pairs of allowable rectangles (R′,R) such that R′ contains at least one

point of P and R′ ⊂ R.



5

Proof. For a fixed i, any point of the n input points is contained in a constant number of i-allowable
rectangles, as such rectangles are bounded by lines of Ga,b(i) and have bounded aspect ratio. Thus
(i) follows from the fact that i ≤ logL = O (log n).

By the same argument, if R′ contains at least one point there are O (log n) allowable rectangles R
containing R′. As there are O (n log n) choices for R′, (ii) follows. �

Next, we introduce a dissection tree that adapts to a given solution to VRAP. The idea is to
subdivide Q0 recursively by alternately splitting the current rectangle and zooming into the ‘area
of interest’. We call such a subdivision a zoom tree. In principle, a zoom tree ZTa,b is defined
with respect to a, b and any fixed subset T ⊆ P . However, in this section, as well as in the other
analytical parts of this paper, we only consider the zoom tree corresponding to the set T ∗ ⊆ P of
tour points in the optimal solution (of course, the actual algorithm does not know this set in advance
and will have to guess T ∗, and therefore also the structure of the zoom tree considered here). The
root of ZTa,b is Q0, and the nodes of ZTa,b are the allowable rectangles recursively obtained from
the following parent-child relations (see Fig. 1 for an illustration). For every rectangle in ZTa,b we
either say that it is split or that it is zoomed, depending on how it is obtained from its parent.
Consequently, a zoomed rectangle will be split in the next step, and a split rectangle will be zoomed
in the next step.

R′

R′ R′′

Figure 1. If the rectangle R is zoomed, we subdivide it into two children R′ and
R′′ (left). Otherwise, if R is split, its child R′ is a small allowable rectangle that
contains all points on the salesman tour (right).

If an i-allowable rectangle R ∈ ZTa,b is zoomed, we obtain its two children R′ and R′′ by cutting
R parallel to its shorter side along the line of Ga,b(i) that minimizes |area (R′) − area (R′′) | (that
is, we aim to nearly bisect R). If this cut is not unique we prefer the leftmost (bottommost) one.
We call the line C along which we split R the cutting line. It is easily seen that the two rectangles
we obtain are j-allowable for some j ∈ {i− 2, i− 1, i}. R′ and R′′ are split rectangles (as they are
obtained by splitting R).

A split rectangle R has only one child R′, which is constructed as follows: consider the minimal
rectangle B containing all points in R ∩ T ∗. (We will see that a split rectangle always contains
a tour point, cf. Lemma 15.) Choose R̃ as the allowable rectangle with smallest circumference
such that d(∂R̃, ∂B) ≥ |B|/4. If this does not uniquely define R̃, choose the left- and bottommost
candidate. Let R′ := R∩ R̃. As the intersection of two allowable rectangles, the resulting rectangle
R′ is allowable. R′ is a zoomed rectangle.

We stop the subdivision process at R if either R is 1-allowable or if R contains at most one point of
P . Such rectangles become leaves of ZTa,b. We define Q0 to be split, such that the first dissection
step is a zoom step. For an allocation point p ∈ P \ T ∗ and a tourpoint q ∈ T ∗, we say that the



6

rectangle R ∈ ZTa,b separates p and q if and only if it is the rectangle in ZTa,b closest to the root
such that

– either R is split and p ∈ R and q 6∈ R,
– or R is zoomed and p 6∈ R and q ∈ R (sic!).

One easily checks that this uniquely defines R.

In the sequel, we will introduce the concept of portal-respecting allocations. For a given (allowable)
rectangle R, we place a point on each corner and m − 1 equidistant points subdividing each side.
We call these points portals and denote by Galloc = Galloc(R) the set of portals on ∂R. The
portal-respecting distance dR(p, q) between p ∈ R and q /∈ R is defined as

dR(p, q) := min
g∈Galloc(R)

d(p, g) + d(g, q).

In other words, we detour the line segment pq over the nearest portal on ∂R.

The next lemma gives an easy bound on the difference between the Euclidean distance and the
portal-respecting distance with respect to some rectangle R.

Lemma 8. For any rectangle R and points p ∈ R and q /∈ R, we have

dR(p, q)− d(p, q) ≤ |R|
m
.

Proof. Let x ∈ ∂R denote the point where the straight line from p to q crosses the border of R, and
let g ∈ Galloc(R) denote the portal which is closest to x. As the portals are equidistant, we have
d(x, g) ≤ |R|/(2m). By the triangle inequality, we can bound the portal-respecting distance by

d(p, g) + d(g, q) + 2d(x, g) ≤ d(p, q) + |R|/m.
�

The portal-respecting distance dZTa,b
(p, q) between p ∈ P \ T ∗ and q ∈ T ∗ is the portal-respecting

distance w.r.t. the rectangle R ∈ ZTa,b that separates p and q. The main result of this section is the
next lemma, which appears in similar form already in [11]. It asserts that a constant number m of
portals per rectangle suffices to guarantee that, in expectation, the portal-respecting distances are
good estimates for the real distances. Here we denote by dZTa,b

(p, T ∗) the infimum over all portal
respecting distances dZTa,b

(p, q), q ∈ T ∗.

Lemma 9. For given ε > 0, there exists m = m(ε) such that for every allocation point p ∈ P \ T ∗
and for a and b uniformly at random from {0, 2, . . . , L− 2}, we have

E
[
dZTa,b

(p, T ∗)
]
≤ (1 + ε)d(p, T ∗).

In fact, our proof yields the following more general statement, which may seem strange at the
moment but will be needed in Section 5. Essentially it states that Lemma 9 still holds if an arbitrary
constant factor is inserted in Lemma 8. We will need this because our algorithm introduces several
other errors of order O (|R|/m) when estimating allocation costs.

Lemma 10. Let d∗(p, q) be any distance measure which overestimates the Euclidean distance from
a given allocation point p to a given tour point q by an absolute error of order O (|R|/m) for the
rectangle R separating p and q. Then for given ε > 0, there exists m = m(ε) such that for every
allocation point p ∈ P \ T ∗ and for a and b uniformly at random from {0, 2, . . . , L− 2}, we have

E [d∗(p, T ∗)] ≤ (1 + ε)d(p, T ∗).

The remainder of this section is devoted to the proof of Lemma 9.



7

3.2. Proof of Lemma 9. It suffices to prove that for a fixed allocation point p, the random variable

∆p :=dZTa,b
(p, T ∗)− d(p, T ∗)

satisfies
E [∆p] = O (logm/m) d(p, T ∗).

Lemma 9 then follows by choosing m appropriately.

For ease of readability, the proof is divided into three parts. We start by collecting a couple of
simple but useful geometrical facts about dissection trees and portal-respecting allocations. We
proceed by defining events used in a rather lengthy case distinction, and proving some technical
statements about the probabilities involved. Finally, we put everything together in the main part
of the proof, the actual case distinction.

3.2.1. Geometrical Facts. As outlined above, we proceed with some geometric observations. We
start with a very simple fact about how good the dissection along i-allowable lines in split steps
approximates an exact bisection.

Lemma 11. Let R denote a zoomed rectangle of level i ≥ 2, and assume that R is split along the
line C into its two children. The distance between C and any shorter side of R is at least (3/7)|R|.

Proof. The line C ′ cutting R exactly in half has distance |R|/2 from any shortest side of R but
does not belong to Ga,b(i) in general. However, there is always a line C on Ga,b(i) within distance
2i/2 of C ′. Thus, C is at least at distance

|R|
2
− 2i

2
≥ |R|

2
− |R|

14
=

3
7
|R|

from any shorter side of R. �

From Lemma 11, we immediately obtain the next technical observation.

Lemma 12. Let R1 and R2 be two zoomed rectangles such that R2 is a descendant of R1. Let C1 ‖
C2 denote the cutting lines splitting R1 and R2, respectively. Then we have |R2| ≤ (7/3)d(C1, C2).

Proof. Clearly, C1 is as least as far from C2 as any shorter side of R2 is. Hence, by Lemma 11 we
have

d(C1, C2) ≥ 3
7
|R2|,

which implies the claim. �

The next two statements are concerned with the geometric properties of zoom steps.

Lemma 13. Let R denote a zoomed rectangle of level i ≥ 2. Then each side of R has a tour point
within distance at most (11/28)|R|.

Proof. Let R0 denote the parent of R. Recall the construction of R: we consider the minimal
rectangle B that contains R0 ∩ T ∗ and choose R̃ as the smallest allowable rectangle containing
B such that d(∂R̃, ∂B) ≥ |B|/4. Then R = R0 ∩ R̃. By construction, every side of B contains
at least one tour point. If R is i-allowable we thus have a tour point within distance at most
|B|/4 + 2i ≤ |R|/4 + |R|/7 = (11/28)|R| of each side of R. �

Lemma 14. Let p be an allocation point and q a tour point, and assume that R ∈ ZT ∗a,b is a zoomed
rectangle of level i ≥ 2 separating p and q. Then we have |R| ≤ 14d(p, q).



8

Proof. We use the same notation as in the proof of Lemma 13. Let j ≥ i ≥ 2 denote the level of R̃.
As we assumed that R is the (first!) rectangle separating p and q, the point q is in R0 \R and thus
not in R̃. As on the other hand q ∈ B, we have d(p, q) ≥ |B|/4. By construction, the corresponding
sides of R̃ and B are within distance at most |B|/4 + 2j . Hence, we obtain

|R̃| ≤ (6/4)|B|+ 2 · 2j ≤ 6d(p, q) + (2/7)|R̃|,

and thus |R| ≤ |R̃| ≤ 7/5 · 6d(p, q) ≤ 14d(p, q). �

In combination, Lemma 11 and Lemma 13 yield the following observation about the structure of
ZTa,b.

Lemma 15. Every rectangle of ZTa,b contains at least one point of T ∗. In particular, the zoom
step is well-defined.

Proof. Since we stop the subdivision at 1-allowable rectangles, the parent R0 of any split rectangle
has at least level 2. By Lemma 13, there is a tour point within distance (11/28)|R0| of all sides of
R0. Since by Lemma 11 the line C cutting R0 has distance at least (3/7)|R0| > (11/28)|R0| from
the shorter sides of R0, it follows that every split rectangle contains a tour point. Therefore, the
zoom step is well-defined, and it follows that also every zoomed rectangle contains at least one tour
point. �

3.2.2. Events and Probabilities. Let q ∈ T ∗ denote the tour point closest to p, i.e., p is allocated
to q in the optimal solution. In the sequel, we use the notation x := d(p, q) and let the random
variable I denote the level of the rectangle R separating p and q. Thus we have |R| = Θ(2I).

As the structure of the zoom tree ZTa,b changes with the choice of a and b, we have to distinguish
several cases. Clearly, as long as I ≤ log x+c for some constant c, Lemma 8 immediately guarantees
that

∆p ≤ dR(p, q)− d(p, q) ≤ |R|
m

= O (x/m) .

This already settles the case for the event

E0 := {I ≤ log x+ 2}.

Formally, we have
E [∆p | E0] Pr {E0} = O (x/m) . (2)

For the rest of this proof, we focus on the event E0. Note that we have I > log x + 2 ≥ 2 in this
case, and thus the geometrical lemmas of the previous section are applicable to R and its ancestors.

The next statement is crucial to our analysis and is illustrated in Figure 2.

Lemma 16. If E0 occurs then R is split and the following is true. Let C denote the cutting line
separating p from q, let S denote the line through p parallel to C, and let S− denote the halfspace
not containing q and C. Then S− contains at least one tour point and we have I ≥ log y− 5, where
y := d(p, r) denotes the distance to the closest such tour point r.

Proof. If R is zoomed, we have by Lemma 14 that 7·2I ≤ |R| ≤ 14x, i.e., I ≤ log x+1, contradicting
the assumption that E0 occurred. Hence R is split. Without loss of generality, we assume that C
is vertical, and that q is to the right of p. We argue by contradiction. If the point r exists but
I < log y− 5, we have that |R| < 7y · 2−4 ≤ y/2, which implies that there is no tour point inside R
and to the left of p. If r does not exist, this is clear anyway. Either way, we arrive at the following
contradiction. By Lemma 13, p is within distance (11/28)|R| of the left border of R. Since the
cutting line C has distance at least (3/7)|R| from the left border by Lemma 11, we obtain that



9

x ≥ (3/7 − 11/28)|R| = |R|/28 ≥ 2I/4, i.e., I ≤ log x + 2, contradicting the assumption that E0
occurred. �

C

S

S− p
q

r

y

x

R

Figure 2. Sketch to Lemma 16.

In the remainder of this proof, we stick to the notations r for the closest tour point to p on the
‘other side’ than q, and y = d(p, r) for its distance from p. Recall that R and I denote the rectangle
separating p and q and its level, respectively. Analogously, let R′ denote the rectangle separating
p and r, and J its level. By C we denote the cutting line separating p and q (which coincides with
one of the sides of R), and by C ′ analogously the cutting line separating p and r (if R′ is split).

Note that in this setup, both p and q (and thus x) are fixed, but r (and thus y) as well as R
and R′ (and thus I and J) are indeed random variables with respect to the random choice of
(a, b) ∈ {0, 2, . . . , L− 2}2. Observe that r is fixed once we have the orientation of C. Indeed, let
Ev ⊆ E0 denote the event that C is vertical, and let rv denote the corresponding value of the point r.
Analogously, let Eh ⊆ E0 denote the event that C is horizontal, and let rh denote the corresponding
value of r. In the sequel, we assume that Ev occurs and assume in addition that q is to the right
and r = rv to the left of p. The other cases are symmetric. Note that y = d(p, rv) =: yv is fixed on
Ev. More specific, we consider the two main events

EA := Ev ∩ {The zoom tree ZTa,b separates first p and rv, then p and q},
EB := Ev ∩ {The zoom tree ZTa,b separates first p and q, then p and rv}

and also the events

E1 := Ev ∩ {R′ is zoomed}
E2 := Ev ∩ {R′ is split, C and C ′ are parallel}
E3 := Ev ∩ {R′ is split, C and C ′ are orthogonal}.

Note that ZTa,b cannot separate p from both q and r simultaneously, as q is separated from p by
a vertical cutting line to the right of p, and r is to the left of p. We throughout use the notations
EA1 := EA ∩ E1, PrA1 {. . . } = Pr { . . . | EA1}, EA1 [. . . ] = E [ . . . | EA1], and so on.

For any two points p1, p2 ∈ P and 1 ≤ i ≤ i0, let V(p1p2, i) and H(p1p2, i) denote the events that
the line segment p1p2 is cut by a vertical, respectively horizontal, i-allowable line.

To calculate Pr {V(pq, i)}, we observe that the line segment pq is cut by at most x/2 + 1 vertical
lines of the grid G0,0(1). For each of these lines, the probability that it is in Ga,b(i) is 2−(i−1). As



10

p and q have odd integer coordinates, we have x ≥ 2 and thus

Pr {V(pq, i)} ≤ (x/2 + 1) · 2−(i−1) = O
(
x/2i

)
.

It follows that

Pr {I = i} ≤ Pr {V(pq, i) ∪H(pq, i)} = O
(
x/2i

)
and by summing up also

Pr {I ≥ i} = O
(
x/2i

)
. (3)

We will mostly use these bounds in the form

Pr {I = i | E}Pr {E} = Pr {{I = i} ∩ E} = O
(
x/2i

)
, (4)

and

Pr {I ≥ i | E}Pr {E} = O
(
x/2i

)
, (5)

for some event E . By analogous arguments one obtains for any E ⊆ Ev that

Pr {J = j | E}Pr {E} = O
(
yv/2j

)
.

The events {I = i} and {J = j} are not independent. However, conditioning on E3, i.e., C and C ′

being orthogonal, they can be shown to behave as if they were independent: we can bound them by
V(pq, i) and H(prv, j), respectively, which are independent in the unconditioned probability space.
Formally, we have for any event E ⊆ E3 that

Pr {I = i, J = j | E}Pr {E} ≤ Pr {V(pq, i) ∩H(prv, j) | E}Pr {E}
≤ Pr {V(pq, i) ∩H(prv, j)}
= Pr {V(pq, i)}Pr {H(prv, j)}
= O

(
xyv/2i+j

)
.

(6)

3.2.3. Case Distinction. We now consider the subcases of the case that E0 occurs one by one. Recall
that by Lemma 16, we have I ≥ log y − 5 in all these cases. By (3), this implies in particular that

Pr {Ev} = O (x/yv) . (7)

Case A. ZTa,b separates first p and rv, then p and q. This is the easier case, as we can always
let p be allocated to q and work with the bound

∆p ≤ dR(p, q)− d(p, q) ≤ |R|/m (8)

guaranteed by Lemma 8. We have to consider several subcases which are illustrated in Figure 3.

Case A1. R′ is zoomed. This case cannot occur, as R′ then contains by construction both rv and
q, and thus also separates p from q. However, we assumed that E0 occurred, which by Lemma 16
in particular implies that p and q are separated by a split rectangle.

Case A2. R′ is split, C and C ′ are parallel. As the two cutting lines are parallel and within distance
at most x+ yv ≤ 2yv, we obtain by Lemma 12 that |R| = O (yv). Therefore, by (8), ∆p is at most
O (yv/m), and we have with (7) that

EA2 [∆p] Pr {EA2} = O (yv/m)O (x/yv) = O (x/m) . (9)



11

R

R′

p
q

rv
R

R′

p

q

rv

(a) (b)

Figure 3. Sketches of the situation we have in case A2 (a) and case A3 (b). Note
that p, q and rv are fixed, but R and R′ depend on the choice of a and b.

Case A3. R′ is split, C and C ′ are orthogonal. Here we have no guarantee that |R| = O (yv). Due
to R′ ⊃ R and Lemma 16, we have J ≥ I ≥ log yv − 5. Hence, we obtain with (6) that

EA3 [∆p] Pr {EA3} =
∑

j≥log yv−5

j∑
i=dlog yv−5e

EA3 [∆p | I = i, J = j] · PrA3 {I = i, J = j}Pr {EA3}

=
∑

j≥log yv−5

j∑
i=dlog yv−5e

O
(
2i/m

)
· O
(
xyv/2i+j

)
= O (x/m)

∑
j≥log yv−5

(j − log yv + 6) · O
(
yv/2j

)
= O (x/m) .

(10)

Case B. ZTa,b separates first p and q, then p and rv. Our strategy is to let p be allocated to
rv instead of q if the portal-respecting distance to q becomes too large. By Lemma 8, we have

∆p ≤ min {dR(p, q)− d(p, q), dR′(p, rv)}
≤ min

{
|R|/m, yv + |R′|/m

}
.

(11)

Recall that |R| = Θ(2I) and |R′| = Θ(2J). Again we have three subcases.

Case B1. R′ is zoomed. By Lemma 14 we have that |R′| = O (yv), as R′ is zoomed and separates
p and rv (if R′ has level 1, this is clear anyway). We deduce from (11) that

∆p ≤ min{O
(
2I/m

)
,O (yv)}



12

R

R′
p

q

rv

R

R′
p

q

rv

(a) (b)

Figure 4. Sketches of the situation we have in case B1 (a) and case B2 (b). Case
B3 is similar to B2; only the orientation of the line separating p and rv is horizontal.

and thus with (4) and (5) that

EB1 [∆] Pr {EB1} =
blog(myv)c∑
i=dlog yv−5e

EB1 [∆ | I = i] PrB1 {I = i}Pr {EB1}

+ EB1 [∆ | I > log(myv)] PrB1 {I > log(myv)}Pr {EB1}

=
blog(myv)c∑
i=dlog yv−5e

O
(
2i/m

)
· O
(
x/2i

)
+O (yv) · O (x/(myv))

= O (logm) · O (x/m) +O (x/m)

= O (x logm/m) .

(12)

Case B2. R′ is split, C and C ′ are parallel. Similarly to Case A2, we obtain from Lemma 12 that
|R′| = O (yv), and it follows with the same calculation as in Case B1 that

EB2 [∆p] Pr {EB2} = O (x logm/m) . (13)

Case B3. R′ is split, C and C ′ are orthogonal. In this case, we have no guarantee that |R′| = O (yv).
To the contrary: as the line prv is inside the parent R0 of R′, we have that yv ≤ 2|R0| ≤ 6|R′| ≤
6 · 13 · 2J (cf. Lemma 11) and, therefore, J ≥ log yv − 7.

Thus, we have I ≥ J ≥ log yv − 7 and obtain from (11) that

∆p ≤ min{O
(
2I/m

)
,O
(
2J
)
}.



13

We obtain with (4) and (6), that

EB3 [∆p] Pr {EB3} =
blog(myv)c∑
i=dlog yv−7e

EB3 [∆p | I = i] PrB3 {I = i}Pr {EB3}

+
∑

i>log(myv)

i∑
j=dlog yv−7e

EB3 [∆p | I = i, J = j] PrB3 {I = i, J = j}Pr {EB3}

= O (x logm/m) +
∑

i>log(myv)

i∑
j=dlog yv−7e

O
(
2j
)
· O
(
xyv/2i+j

)
= O (x logm/m) +O (x)

∑
i>log(myv)

(i− log yv + 8) · O
(
yv/2i

)
= O (x logm/m) +O (x) · O (logm/m)

= O (x logm/m) ,
(14)

where the first sum is dealt with exactly as in the previous cases, using only the bound ∆p =
O
(
2I/m

)
.

With the law of total probability we obtain from (2), (9), (10), (12), (13), and (14) that

E [∆p] = O (x logm/m) ,

and Lemma 9 follows choosing m appropriately.

4. VRAP on Straight-Line Graphs

The results in this section extend work by Rao and Smith [13] to the adaptive dissection setting.
Using an algorithm due to Gudmundsson et al. [10], we can quickly compute a straight-line graph
S ′ on a superset of P which has few ‘relevant’ crossings with the allowable rectangles introduced in
the previous section, and such that there exists an expected nearly-optimal tour through S ′. This
will allow us to quickly find such a tour by dynamic programming.

4.1. Concepts and Results. In the sequel it is of advantage to look at a solution (T, π) from a
slightly different viewpoint. Recall that Q0 has sidelength 2L = O (n) and its center at (a, b), where
a, b ∈ {0, 2, . . . , L− 2} uniformly at random. For any connected straight-line graph (SLG) G on
a vertex set P ′ ⊇ P , we denote the induced shortest path metric by dG(·, ·). For a given solution
(T, π), let

valG (T, π) =
∑
{p,q}∈π

dG(p, q) +
∑
p∈A

(
α(p) + β(p) min

q∈T
d(p, q)

)
. (15)

Note that only the length of the tour is measured in the shortest path metric. Every solution to
VRAP gives rise to a closed walk W = W(T, π) formed by the shortest paths between subsequent
tour points. In principle this walk may include non-tourpoints, but in order to minimize (15) it
is always better to ‘pick up’ such points and include them in T . Thus a solution minimizing (15)
can be described as a walk W through G, where by definition the tourpoints are exactly the points
TW := T ∩ W on the walk, and the remaining points AW := P \ TW are allocated. Denoting the
entire length of the walk W by ` (W) we can rewrite (15) as

valG (W) = ` (W) +
∑
p∈AW

(
α(p) + β(p) min

q∈TW
d(p, q)

)
. (16)



14

Note that an edge contributes s times to ` (W) if we traverse it s times on the walk. We denote the
optimization problem (16) by VRAP(G) in the following.

We say that a crossing of an edge e of a SLG G and a rectangle R is relevant if e intersects ∂R and
exactly one endpoint of e is within R. The graph G is said to be r-sparse if any allowable rectangle
R has at most r relevant crossings with edges of G. Note that it depends on the choice of a and b
whether a fixed SLG G is r-sparse or not. The main result of this section is the next lemma.

Lemma 17. Let T ∗ denote the set of tour points of the optimal solution to VRAP. For given
ε > 0, there exists r = r(ε) such that for all choices of a, b ∈ {0, 2, . . . , L− 2}, one can compute in
O
(
n log2 n

)
time a point set S and an r-sparse SLG S ′ on the point set P ′ = P

.
∪ S satisfying the

following: If a and b are chosen uniformly at random, the shortest walk W∗ on S ′ visiting all points
of T ∗ has expected length

E [` (W∗)] ≤
∑

{p,q}∈π∗
d(p, q) + ε val (T ∗, π∗) .

Moreover, W∗ uses no edge of S ′ more than twice.

Since TW∗ ⊇ T ∗, the allocation costs in valS′ (W∗) do not exceed those in val (T ∗, π∗), and thus
Lemma 17 immediately implies that

E [valS′ (W∗)] ≤ (1 + ε) val (T ∗, π∗) .

Together with val (T ∗, π∗) ≤ valS′ (W∗), it follows that W∗ induces an expected nearly-optimal
solution to VRAP. The rest of this section is devoted to the proof of Lemma 17.

4.2. Proof of Lemma 17. In order to prove this statement, we need to review two important
concepts. Firstly, a SLG S on P is a (1 + ε)-spanner if for all p, q ∈ P we have dS(p, q) ≤
(1 + ε) · d(p, q). Gudmundsson et al. [10] prove that for every point set P there exists a (1 + ε)-
spanner S with ` (S) ≤ C(ε) · ` (MST ), where MST denotes the minimum spanning tree on P .
They also show that such a spanner has O (n) edges and can be constructed in O (n log n) time1,
where the O-notation is hiding constants depending on ε.

Secondly, consider the quadtree QTa,b obtained by dividing Q0 into four equal-sized squares and
recursively repeating this division process until the squares have sidelength 2 (and therefore contain
at most input point). It is easy to see that this tree has Θ(n2) squares. We call QTa,b a shifted
dissection, as Q0 depends on (a, b) and is thus shifted relatively to the point set P . We have
the following relation between the grid Ga,b(i) of Section 3.1 and QTa,b: if the levels of QTa,b are
numbered bottom-up such that level 1 contains the leaves of QTa,b, the grid Ga,b(i) dissects Q0 into
squares of level i.

Usually, one stops the division process at squares which contain at most one point of P . It is easy to
see that the resulting truncated quadtree has O (n log n) squares (cf. Lemma 7). For our purposes
however, we truncate the quadtree slightly differently: Consider the O (n log n) allowable rectangles
containing at least one point from P , and divide each i-allowable rectangle into at most 132 = 169
squares of level i. Now consider the truncated quadtree QT ◦a,b consisting of these O (n log n) squares
and all their ancestors. As each square has O (log n) ancestors, QT ◦a,b has O

(
n log2 n

)
squares.

A SLG G is said to be r-vapid with respect to a (truncated) quadtree QTa,b if every square Q in
QTa,b has at most r relevant crossings with G.

Lemma 18. For all choices of a, b ∈ {0, 2, . . . , L− 2}, any G that is r-vapid w.r.t. QT ◦a,b is 169r-
sparse.

1A paper of Arya et al. [6] claiming this result prior to [10] is incorrect.



15

Proof. Assume that R is i-allowable. R is the union of at most 132 = 169 level i squares of QT ◦a,b,
and any relevant crossing of G with R is also relevant with respect to one of these squares. Thus G
is 169r-sparse if it is r-vapid w.r.t. QT ◦a,b. �

The concept of shifted dissections and that of r-vapidness were introduced in [4] and [13], respec-
tively.

Proof of Lemma 17. First, we compute in O (n log n) time a (1 + ε)-spanner on P of total length

` (S) ≤ C(ε) · ` (MST ), (17)

using the algorithm of Gudmundsson et al. [10].

Let W1 = W(T ∗, π∗) denote the walk on S induced by the optimal solution (T ∗, π∗). Since S is a
(1 + ε)-spanner, we have

` (W1) ≤ (1 + ε) ·
∑
{p,q}∈π

d(p, q) ≤
∑
{p,q}∈π

d(p, q) + ε · val (T ∗, π∗) . (18)

Let r := c · C(ε)/ε, for the constant C(ε) from (17) and a suitably large constant c > 0. We
transform S into a graph S ′ which is r0-vapid w.r.t. QT ◦a,b for r0 := r/169. Lemma 18 then states
that S ′ is r-sparse. To obtain S ′ we proceed along the lines of Rao and Smith [13], adding artificial
points S to S such that the resulting graph S ′ is indeed a SLG on a point set P ′ = P

.
∪ S ⊇ P .

We proceed bottom-up through QT ◦a,b and transform S into S ′ by a sequence of local modifications.
Let Q denote a square in QT ◦a,b where we encounter more then r0 relevant crossings. Then at least
one side of Q has more then r0/4 − 1 relevant crossings. At each such side we modify the SLG
according to Figure 5 (see [13] for details). At the same time, we detour the walkW1 over the single
new edge that crosses the side of Q. The artificial points we add are within small constant distance
of ∂Q, such that the edges we ‘patch in’ at different levels overlap. Thus, at most one new crossing
per side of an already patched square is created by patching operations at higher levels of QT ◦a,b .
In [13] it was shown that

E
[
`
(
S ′
)
− ` (S)

]
= O (1/r) ` (S), (19)

where the expectation is with respect to the random choice of a and b. Note that an edge e of S has
only relevant crossings with at most O (log n) squares of QT ◦a,b. Since S contains O (n) edges, the
total time we need for the modifications according to Figure 5 is O (n log n). As we have to consider
all O

(
n log2 n

)
squares in QT ◦a,b, the total time required by the bottom-up procedure described

above is O
(
n log2 n

)
.

Figure 5. Illustration to the proof of Lemma 17.

We obtain a graph S ′ which is r0-vapid and thus r-sparse, and a walk W2 on S ′.



16

Observe that ` (W2) − ` (W1) is bounded by the sum of the detours which is exactly the length of
the new edges weighted with their multiplicity in W2. In order to bound these multiplicities, we
further modify W2 as follows. Consider the multigraph W2 on vertex set T

.
∪ S whose edge set is

given by the edges of W2 with their corresponding multiplicity. Since W2 is a closed walk, W2 is
Eulerian. We replace all edges of odd multiplicity by a single edge, and all edges of even non-zero
multiplicity by two edges. It is easy to see that the multigraph W3 ⊆ W2 we obtain is still Eulerian,
and that any Eulerian tour through W3 is a closed walk W3 in S ′. This argument shows that any
shortest salesman tour in any graph uses no edge more than twice.

As W3 traverses every edge at most twice, we have

` (W3)− ` (W1) ≤ 2 ·
(
`
(
S ′
)
− ` (S)

)
,

and consequently

E [` (W3)− ` (W1)] ≤ 2 · E
[
`
(
S ′
)
− ` (S)

]
(19)
= O (1/r) ` (S)

(17)

≤ O (1/r) · C(ε) · ` (MST )

≤ ε val (T ∗, π∗) ,

where the last inequality follows from r = c · C(ε)/ε with c chosen large enough and the fact that
` (MST ) is a lower bound for val (T ∗, π∗). Hence, it follows from (18) that

E [` (W3)] ≤ ` (W1) + ε · val (T ∗, π∗) ≤
∑
{p,q}∈π

d(p, q) + 2ε · val (T ∗, π∗) ,

and adapting ε appropriately completes the proof. �

5. A PTAS for VRAP

We now introduce a PTAS for VRAP. Lemma 17 plays a crucial role in our approach. In principle,
our PTAS chooses a and b at random, computes S ′ and then tries to find an optimal solutionW∗0 to
VRAP(S ′) by dynamic programming, guessing TW∗0 and the corresponding zoom tree ZTa,b in the
process. By Lemma 17 we know that this approach should yield an expected nearly-optimal solution
to the original problem VRAP. (Note that W∗0 does not necessarily equal W∗, as in Lemma 17 we
only minimized the tour length and ignored allocation costs.)

This approach needs several extra twists to achieve the desired running time. Most notably, we
estimate the allocation costs by the portal-respecting distances. This means that we will not
necessarily find W∗0 , but an optimal solution to a slightly modified problem. However, since by
Lemma 9 the portal-respecting distances are good estimates for the real distances in expectation,
we can keep the expected total error caused by this small.

Moreover, it would be too time-consuming to allocate all points individually, as the same point
is considered in many different steps of the dynamic program. We overcome this difficulty by
partitioning the points that need to be allocated in a given step into classes and assigning all points
of a class to the same tour point. The errors introduced by this are in the same order of magnitude
as the errors inherent to the idea of portal-respecting allocations.

Lastly, to avoid costly shortest path computations we shortcut between vertices of S ′ whenever this
does not spoil the sparseness properties of S ′ which are crucial to our algorithm. One can think
of these shortcuts as additional edges that are added to S ′. In fact, this causes no problems, as it



17

only decreases the length of the tour the algorithm will output, and does not change the allocation
costs.

5.1. Dynamic Programming. Throughout this section, consider m = m(ε) and r = r(ε) fixed
according to Lemma 10 (for an as yet unspecified distance measure d∗ that will emerge in the course
of this section) and Lemma 17. For any allowable rectangle R containing at least one point from P ,
let Galloc = Galloc(R) denote the set of the 4m portals on ∂R as in Section 3, and let Ecross denote
the set of edges of S ′ crossing the boundary of R such that one endpoint is contained in R. As S ′
is r-sparse, we have |Ecross| ≤ r. A configuration C for R is given by

(1) a collection Scon of pairs from Ecross, where each element appears at most twice,
(2) functions ζin : Galloc → {1, ..., 2m,∞} and ζout : Galloc → {1, ..., 7m,∞}, and
(3) a bit σ ∈ {split, zoomed}.

Since m and r are constant, the total number of configurations for R is bounded by a constant
depending only on the desired approximation ratio ε.

A configuration C describes a subproblem, i.e., a local problem for R which is interpreted as follows.
Firstly, the pairs in Scon determine which of the edges in Ecross must be connected by walks inside
R. As the walk W∗ we are after might visit edges of S ′ twice (cf. Lemma 17), we allow Scon to
contain duplicates. Secondly, the functions ζin and ζout describe the distance from a given portal
to the next point on the tour inside resp. outside of R. More precisely, for every g ∈ Galloc, the
distance from g to the next point on the salesman tour inside R is within distance (|R|/m)ζin(g).
Analogously, the distance to the next point on the salesman tour outside of R is encoded by ζout(g).
We shall see below that it is sufficient to encode these distances up to 7|R| only.

We ask for a best possible local solution for a given configuration C. More precisely, we try to
minimize the length of all tour edges which lie completely inside R plus the full allocation costs
for all non-tour points in R (regardless of whether they are allocated to a tour point inside or
outside R), subject to the constraints and guarantees given by C. As we do not know the zoom
tree corresponding to the optimal solution in advance, we cannot proceed by a top-down divide and
conquer approach along the zoom tree. Instead, we proceed bottom-up by dynamic programming,
in a much larger structure which can be seen as the union of the zoom trees for all possible choices
of T ⊆ P . By dynamic programming, we calculate close upper bounds T [R, C] for the optimal
solutions to these local optimization problems. The bit σ indicates whether we look at R as a split
or as a zoomed rectangle in a zoom tree, and thus how our dynamic program calculates T [R, C]
from the values previously found for smaller rectangles.

It is crucial that we consider only the O (n log n) allowable rectangles R containing at least one point
of P . We topologically sort those rectangles w.r.t. the partial order given by normal set inclusion,
and process them in this order, going through all possible configurations for each rectangle.

Let R and C denote the rectangle and the configuration we currently consider. We now distinguish
two cases: if R is 1-allowable or |P ∩R| = 1 (case A), we find T [R, C] by exhaustive search.
Otherwise, we calculate T [R, C] by dynamic programming from previously found values in one of
two possible ways (case B), as specified by σ.

Case A. R is 1-allowable or |P ∩R| = 1. Note that this means that R is a leaf in any zoom tree
it is contained in. Also note that an 1-allowable rectangle contains at most 132 = 169 input points
from P . This allows us to proceed in brute force fashion.

Let R and C be given. First we choose from P ∩R the points that lie on the salesman paths inside
R. Let T0 ⊆ P ∩R denote this point set. Since we know that points p with β(p) > 2 are visited
by the optimal solution T ∗ (and therefore also by the walk W∗ from Lemma 17), we always include



18

such points in T0. Also, by definition of the zoom step it is clear that T0 should not be empty if
σ = zoomed. The points in A0 := (P ∩R) \T0 need to be allocated to some tour point either inside
or outside of R. We have O (1) choices of T0. For every such choice, we check whether it satisfies
the restrictions given by ζin, i.e., whether the distance from every portal g ∈ Galloc to T0 is bounded
by (|R|/m)ζin(g). If this is not the case, we reject this choice of T0. If all possible choices of T0 are
rejected, we reject C and set T [R, C] =∞.

Next, we compute optimal walks visiting exactly the points in T0 subject to the constraints given
by Scon. We do not require these walks to use edges of S ′, but calculate them on the complete
graph induced by the (at most 169) points in T0 and the (at most r) endpoints of the edges from
Scon (if these points are not adjacent in S ′, we add the needed edges to S ′ as shortcuts). This can
be done in constant time.

Moreover, we estimate for each p ∈ A0 its allocation cost. It is trivial to compute the distances
to points in T0. On the other side, C guarantees that the nearest tour point outside R has portal
respecting distance at most

min
g∈Galloc

{
d(p, g) +

|R|
m
ζout(g)

}
by definition of ζout(g). So we decide for every point p ∈ A0 whether it is cheaper to allocate it to a
point inside or a point outside R (indeed a portal). As we have 4m portals and at most 169 points,
this can be done in time O (1).

The total cost for this choice of T0 is the total length of all edges on the salesman paths that are
entirely in R, plus the total allocation cost for all points in A0 calculated as explained above. Note
that this overestimates the allocation cost for points which are allocated to tour points outside R.
We identify the choice of T0 minimizing this cost and store the corresponding value in T [R, C]. Thus
we can compute T [R, C] in O (1) time.

Case B. Otherwise. In this case we in particular have no upper bound on the number of input
points inside R. Thus it is not longer possible to compute T [R, C] using brute force search. As we
process the rectangles in ascending order, we may assume that we already have the values T [R′, C′]
for all allowable rectangles R′ ⊂ R and for all configurations C′ to R′.

Case B1. σ = zoomed. We split R into two allowable rectangles R′ and R′′ according to the
properties of zoom trees (cf. Section 3). By Lemma 15, we know that both rectangles should contain
at least one point of P . If this is not the case, we set T [R, C] =∞ for all configurations for R with
σ = zoomed.

We enumerate all choices (C′, C′′) of pairs of configurations for R′ and R′′ with σ′ = σ′′ = split,
checking for each choice whether it is consistent in itself and compatible with C, i.e., whether a set of
salesman paths satisfying Scon can be obtained by joining salesman paths satisfying S′con and S′′con,
and whether the functions ζ ′in, ζ

′′
in, ζout guarantee that the requirements on the position of the tour

points given by the functions ζin, ζ ′out, ζ
′′
out are satisfied. That is, we have to check the equations

|R|
m
ζin(g) ≥ min

{
min

g′∈G′alloc

{
d(g, g′) +

|R′|
m

ζ ′in(g′)
}
, min
g′′∈G′′alloc

{
d(g, g′′) +

|R′′|
m

ζ ′′in(g′′)
}}

(20)

for the portals g ∈ Galloc on ∂R, and

|R′|
m

ζ ′out(g
′) ≥ min

{
min

g∈Galloc

{
d(g′, g) +

|R|
m
ζout(g)

}
, min
g′′∈G′′alloc

{
d(g′, g′′) +

|R′′|
m

ζ ′′in(g′′)
}}

(21)



19

for the portals g′ ∈ G′alloc on ∂R′ and analogously for g′′ ∈ G′′alloc on ∂R′′.

For all pairs of configurations which remain, we compute T [R′, C′] + T [R′′, C′′] and add the total
length of the edges in S′con ∩ S′′con, which are exactly the tour edges with one endpoint in R′ and
the other in R′′. A given edge may be counted twice in this calculation which is in line with our
definition of Scon. We choose the pair (C′, C′′) which minimizes this sum and write its value to
T [R, C]. Note that all computations can be accomplished in O (1) time.

Case B2. σ = split. We enumerate all allowable rectangles R′ ⊂ R containing at least one
point from P and all points p ∈ P ∩R with β(p) > 2. For any such rectangle R′, we consider all
configurations C′ with σ′ = zoomed that are compatible with C in the same sense as in case B1. For
the allocations, we have to check whether the equations

|R|
m
ζin(g) ≥ min

g′∈G′alloc

{
d(g, g′) +

|R′|
m

ζ ′in(g′)
}
, ∀g ∈ Galloc (22)

and
|R′|
m

ζ ′out(g
′) ≥ min

g∈Galloc

{
d(g′, g) +

|R|
m
ζout(g)

}
, ∀g′ ∈ G′alloc (23)

are satisfied. For a given choice of R′ and C′, the total cost for R is T [R′, C′] plus the additional
tour costs plus the additional allocation cost. Recall that by definition of the zoom step, there are
no tour points in R \R′.

To compute the additional tour cost, we enumerate all possible ways to connect the edges in Scon ∪
S′con such that one obtains exactly the salesman paths required by Scon. Note that a salesman path
through R may enter and leave R′ several times. We add the total length of the edges in S′con \Scon

(as before twice if necessary), plus the Euclidean distances between corresponding end points of
edge pairs in Scon ∪ S′con (as before, this corresponds to introducing shortcut edges into S ′). As
there are O (r) edges in Scon and S′con, we can find the ‘connection pattern’ which minimizes this
cost in constant time.

Computing the additional allocation cost is somewhat tricky. We need to allocate all input points
in R \ R′. As we do not have a bound on the number of such points, doing this for each point
separately, i.e., calculating

Calloc :=
∑

p∈P∩(R\R′)

(
α(p) + β(p) ·min

{
min

g∈Galloc

{
d(p, g) +

|R|
m
ζout(g)

}
,

min
g′∈G′alloc

{
d(p, g′) +

|R′|
m

ζ ′in(g′)
}})

(24)

exactly, would be prohibitively expensive. However, as we shall show in a moment, we can quickly
approximate these allocation costs close enough for our purposes. This is basically achieved by
subdividing R \R′ into cells and assigning all points in a cell to the same portal.

Lemma 19. One can preprocess P in O (n log n) time such that one can calculate in O
(
log3 n

)
time for any pair of allowable rectangles R′ ⊂ R an upper bound Ĉalloc on Calloc which is tight up
to a relative error of O (1/m) and an absolute error of O (k(|R|/m) + k′(|R′|/m)), where k and
k′ denote the number of points for which the minimum in (24) is attained by a portal of Galloc,
respectively G′alloc.

We choose the configuration C′ which minimizes the accumulated cost and store the total cost in
T [R, C].



20

Proof of Lemma 19. We subdivide R \R′ into rectangular rings A1, . . . , At. The outer boundary of
ring Ai is at distance

di = |R′| (1 + 1/m)i

from R′, whereas the inner boundary is at distance di−1 (or 0 if i = 1), i.e., the inner boundary of
Ai is indeed the outer boundary of Ai−1. This is illustrated in Figure 6. The cells are constructed
by subdividing each ring Ai into Θ(m2) equally-sized cells. Note that the sidelength |C| of a cell C
in ring Ai is O (di/m).

R′

R

Figure 6. Subdivision of R \R′ into cells. First we subdivide R \R′ into rings of
geometrically increasing radius. Then, we subdivide each ring into Θ(m2) cells.

We have t = O (log(|R|/|R′|)) = O (log n) many rings, and therefore also O (log n) many cells.
By orthogonal semigroup range searching (see [1, 2] for references), we compute for each cell C the
values α(C) :=

∑
p∈P∩C α(p) and β(C) :=

∑
p∈P∩C β(p). This can be done in O

(
log2 n

)
time per cell

and requires preprocessing the points in O (n log n) time before the start of the dynamic program.

Recall that the idea is to assign all input points within a cell to the same portal. With the values
α(C) and β(C) at hand, we can calculate

Ĉalloc :=
∑

C⊆R\R′

(
α(C) + β(C) ·min

{
min

g∈Galloc

{
d(c(C), g) + |C|+ |R|

m
ζout(g)

}
,

min
g′∈G′alloc

{
d(c(C), g′) + |C|+ |R

′|
m

ζin(g′)
}})

in time proportional to the number of cells, i.e., O (log n). Here c(C) denotes the center of C.

It remains to show that this is a good upper bound on Calloc. Clearly, we have d(c, g)−|C| ≤ d(p, g) ≤
d(c, g) + |C| for a cell C with center c, p ∈ C and any portal g. It follows that Calloc ≤ Ĉalloc, and
that for every point p ∈ C∩P we overestimate its allocation cost by at most 2β(p)|C| ≤ 4|C| (recall
that points with β(p) > 2 are in R′ and therefore not considered here.)

The largest cells in our subdivision have sidelength |C| = Θ(|R|/m). Therefore, the absolute
error per point is bounded by O (|R|/m), which already suffices for points that are allocated to
portals of Galloc. For points which are allocated to portals of G′alloc, we distinguish two cases. If
C belongs to ring A1, we have |C| = Θ(|R′|/m). Otherwise, we obtain with d(p, g) ≥ di−1 that
|C| = O (di−1/m) = O (d(p, g)/m).



21

Summing up these pointwise error guarantees yields that Ĉalloc indeed approximates Calloc as
claimed. �

At the end of the dynamic program, we obtain a value T [Q0,©] =: T [Q0] for Q0 = (a, b) + [−L,L]2

and the configuration © with Scon = ∅, ζin(g) = ζout(g) = ∞ for all portals g ∈ Galloc(Q0), and
σ = split.

5.2. Analysis. We prove time complexity and correctness separately, starting with the former.

Proof of Theorem 1 (Complexity). Preprocessing the points as required by Lemma 19 and comput-
ing the r-sparse PSL guaranteed by Lemma 17 takes time O

(
n log2 n

)
.

In the dynamic program, by Lemma 7(i), cases A and B1 apply O (n log n) times and can be
computed in time O (1). By Lemma 7(ii), case B2 applies to O

(
n log2 n

)
pairs of rectangles,

and can be computed in time O
(
log3 n

)
due to Lemma 19. This yields an overall complexity of

O
(
n log5 n

)
. �

It remains to argue why our algorithm produces a nearly-optimal solution. In order to check this
we need the following statement.

Lemma 20. The value T [Q0] calculated by the dynamic program satisfies

E [T [Q0]] ≤ (1 + ε)val (T ∗, π∗) .

Proof of Lemma 20. Let ZTa,b denote the zoom tree to T ∗ as in Section 3, and let W∗ denote
the shortest walk on S ′ visiting all points of T ∗ as in Lemma 17. Recall that ZTa,b stops the
subdivision at a rectangle R′ if either R′ is 1-allowable or contains at most one point of P , and
that every rectangle ZTa,b contains a point from T ∗ by Lemma 15. For all rectangles of ZTa,b, we
now specify configurations C∗ that are compatible with each other (and therefore considered by the
dynamic program), and result in the claimed bound for E [T [Q0]].

Firstly, set for all rectangles σ∗ appropriately, i.e., σ∗ = zoomed if R is zoomed in ZTa,b and
σ∗ = split, otherwise. Furthermore, choose S∗con according to W∗.
Secondly, specify the functions ζ∗in as follows. For leaves R′ of ZTa,b set them as small as possible
such that still d(T ∗ ∩ R′, g) ≤ (|R′|/m)ζin(g), and propagate these restrictions up the zoom tree
such that (20) and (22) hold. Due to the integrality of ζ∗in, this introduces absolute errors of order
O
(
2i/m

)
for rectangles at level i. These errors sum up as a geometric series along the zoom tree,

resulting in a total absolute error of O (|R|/m) for the portals on ∂R.

Finally, set ζ∗out to ∞ on portals of Q0, and use (21) and (23) to calculate ζ∗out for all rectangles
top-down along the zoom tree. Note that finite values are introduced due to (21) by the values ζ∗in
we just calculated. As these errors are propagated down the zoom tree, the total absolute error
for portals on a rectangle R is not necessarily O (|R|/m). However, observe that for every portal
g ∈ Galloc on ∂R and every tour point q ∈ T ∗ we have

|R|
m
ζ∗out(g) ≤ d(g, q) +O

(
|R̃|/m

)
, (25)

where R̃ is the rectangle separating the points in R from q (provided the right hand side is at most
7|R|).
As the ζ∗out-functions only encode distances up to 7|R|, some of these might be set to∞ even if there
are tour points outside of R. However, our PTAS does not require that we encode longer distances.
This is easily checked as follows. Whenever we allocate a point p ∈ P ∩R we are either in case A
or in case B2 of the dynamic program. If R is split, its sibling contains at least one tour point, say



22

q (cf. Lemma 15). Let R0 denote the parent of R, and note that d(g, q) ≤ 2|R0| ≤ 6|R| for every
portal g ∈ Galloc on ∂R (cf. Lemma 11). As q is in the sibling of R, we know that R separates q
from the points in R. Thus, the right hand side of (25) and consequently also the left hand side of
(25) is at most 7|R|. Therefore, our encoding suffices in this case. If R is zoomed, we are in case
A and can allocate any point p ∈ R (exactly!) to a tourpoint inside R, which has distance at most
2|R| from p. This shows that it suffices to encode ζout only up to 7m.

The inaccuracy in the encoding of distances is one of three sources of error in the calculation of
allocation costs. The second one is the error inherent to the concept of portal-respecting allocations
(cf. Lemma 8), and the third one is introduced by Lemma 19. In the calculation of the distance of
a given point p to a (nearby) tourpoint q ∈ T ∗ , these errors sum to an absolute error of O

(
|R̃|/m

)
for the rectangle R̃ separating p and q, and a relative error of O (1/m) which is easily bounded by
ε choosing m large enough. By Lemma 10, it follows that the absolute errors result in an expected
relative error of ε. In total, the expected allocation cost our algorithm calculates is at most (1 + ε)2

times the allocation cost in (T ∗, π∗).

Moreover, the tour’s length (implicitly) calculated in T [Q0] is deterministically bounded by ` (W∗),
which in expectation overestimates the tour cost of the optimum by at most εval (T ∗, π∗) due to
Lemma 17. Adapting ε, the claim follows by linearity of expectation. �

Proof of Theorem 1 (Correctness). Let S∗ ⊇ S ′ denote the graph obtained by inserting the shortcut
edges the dynamic program used in cases A and B2 into S ′. Our PTAS outputs a walk W on S∗
and a number T [Q0]. Since we overestimated the allocation costs in the dynamic program, T [Q0] is
an upper bound on valS∗ (W). Moreover, the solution (T, π) to VRAP induced by W has the same
allocation costs as W but possibly shorter tour length, since it is not restricted to S∗. Therefore,
we have

val (T, π) ≤ valS∗ (W) ≤ T [Q0],

and the claim follows from Lemma 20. �

6. Steiner VRAP

In this section we show Theorem 2, sketching a PTAS with nearly-linear time complexity for
Steiner VRAP. Recall that a solution (T, S, π) to Steiner VRAP is determined by point sets
T ⊆ P and S ⊂ R2, and a salesman tour π through T

.
∪ S. We wish to find a solution (T ∗, S∗, π∗)

such that val• (T ∗, S∗, π∗) is minimum (cf. (1) on p. 2).

In the sequel, it is crucial that we may restrict to instances in which the input points have odd
integral coordinates and the sidelength of the bounding box is O (n/ε) and a power of 2. This is
easily checked using the arguments given in Section 2 for VRAP.

The PTAS for Purchase Cooperative TSP proposed in [3] proceeds by dynamic programming in
a shifted quadtree QTa,b (cf. p. 14), quite similar to Arora’s O(n logO(1/ε) n) PTAS for TSP [4]. Here,
a configuration of a given square Q ∈ QTa,b is defined by specifying for each of O (log n/ε) portals
whether a tour- and/or an allocation edge runs through it. This results in O

(
nO(1/ε)

)
possible

configurations for Q and the same overall complexity for the algorithm. The key observation that
allows us to improve on this is the following:

Lemma 21. Let (T, S, π) denote a solution to Steiner VRAP crossing a fixed line segment L of
length x five or more times. Then there exists a solution (T, S′, π′) with S ⊆ S′ crossing L not more
than four times satisfying val• (T, S′, π′) ≤ val• (T, S, π) + c · x for some constant c.



23

Proof of Lemma 21. If two or more allocation edges cross L such that they allocate a point to the
left to a tour point to the right, we proceed as depicted in Figure 7. Observe that the value of the
new solution exceeds that of the old one by at most 2x, as we add tour segments of total length
at most 2x along L and replace the allocation segments to the right of L by two tour segments
which have the length of the shortest allocation segment being replaced. The second operation only
decreases the cost due to β(p) ≥ 1 for all p ∈ P .

Figure 7. Illustration to the proof of Lemma 21.

Analogously, we proceed if two or more allocation edges cross L from right to left. After these
operations, there remains at most one allocation edge per direction, and the value of the modified
solution is increased by at most 4x. Note that the modified salesman tour π̃ visits a point set T

.
∪ S′

which consists of all points of the original tour π plus some newly added Steiner points.

Now, we apply Lemma 3 of [4] to the salesman tour π̃. This lemma claims that if a salesman tour
π crosses L three times or more, there exists a salesman tour π′ visiting the same points as π but
crossing L at most twice, satisfying ` (π′)− ` (π) ≤ g · x for some constant g.

Thus, replacing π̃ by a new tour π′ through T
.
∪ S′, we obtain a modified solution (T, S′, π′) such

that the total number of crossings is at most four and

val•
(
T, S′, π′

)
≤ val• (T, S, π) + g · x+ 4 · x.

This completes the proof. �

Lemma 21 is an extension of Lemma 3 in [4]. With Lemma 21 at hand, one can show as in [4] that
there exists an expected (1 + ε)-approximation crossing each square of the shifted quadtree QTa,b
only r = O (1/ε) times. This makes it possible to bound the number of configurations per square
at O(logO(1/ε) n). Combining techniques presented in [4] and [5], one obtains a randomized PTAS
for Steiner VRAP with complexity O(n logO(1/ε) n). In the following, we outline the key ideas.

We proceed by dynamic programming in a shifted quadtree QTa,b which is truncated at squares that
contain only one input point. For convenience, we also include all siblings of these squares, such
that every non-leaf of QTa,b has exactly four children. Around every square Q ∈ QTa,b, we place
m = O (log n/ε) equally spaced portals. Similar to [4] and [5], we only consider portal-respecting
solutions, i.e., both tour and allocation edges may cross square boundaries only at portals. Therefore
the portals play the role of ‘auxiliary’ Steiner points, and removing them in the end clearly improves
the found solution. A configuration C for a square Q ∈ QTa,b is given by

(1) up to r portals where the tour crosses the boundary of Q, and information how those portals
are connected within Q,



24

(2) up to r portals that are used for allocations, and for each of these portals a value ζin ∈
{1, ..., 2m,∞} or ζout ∈ {1, ..., 4m,∞},

(3) a bit σ ∈ {allocate, recurse}.

Similarly to Section 5, the values ζin and ζout specify the distances to the next tour or Steiner
point inside resp. outside Q with a precision of |Q|/m. We shall see that it suffices to encode these
distances only up to 4|Q|.
There are m2r many ways to specify the location of the 2r portals, and O (m)r ways to choose the
r values ζin and ζout. Due to m = O (log n/ε) and r = O (1/ε), the total number of configurations
for a given square Q ∈ QTa,b is O(logO(1/ε) n).

The dynamic program works similar to that proposed in Section 5. We try to find good solutions to
the local optimization problems posed by the configurations C for the squares Q ∈ QTa,b, calculating
values T [Q, C] which are close approximations of the sum of the total length of all tour segments
inside Q and the full allocation costs of all allocation points in Q. The bit σ indicates how these
values are calculated. The interpretation of σ = allocate is that Q contains no tour segment. In
particular, the tour does not cross the boundary of Q, and all input points in Q are allocation
points. In that case we calculate T [Q, C] directly, using the portal-respecting distances as estimates
for the real distances as before. If σ = recurse, we calculate T [Q, C] recursively, using the values
found for its four children (unless Q is a leaf of QTa,b).

In total, we distinguish three cases, depending on σ and the number of points Q contains. We start
with the two base cases.

Case A1. σ = allocate. As in Section 5, we estimate the allocation cost for each point using
the function ζout. (Recall that σ = allocate means that Q contains no tour segment, so we can
only allocate to the outside of Q.) Since we only recurse as long as there are tour segments in the
square at hand, we know that one of the siblings of Q contains a tour segment, which is at distance
at most 4|Q| from any portal on Q. Therefore, our encoding of the distances suffices. As we only
consider solutions that cross each rectangle at most r times, we know that Q contains at most r
points. Hence, one application of case A1 requires constant time.

Case A2. σ = recurse and |P ∩ Q| ≤ 1. This means that Q is a leaf of QTa,b. If Q contains
a point p ∈ P , we guess whether it is a tour point or not. Also, we guess the coordinates of the
Steiner points on a m×m grid subdividing Q. Note that it makes no sense to introduce more than
one Steiner point per allocation. Therefore, it suffices to guess the locations of at most r+1 Steiner
points, at most r for the ζin’s and possibly one for p. For each such choice, we check whether the
restrictions given by the functions ζin are satisfied, and calculate optimal salesman paths on the
tour portals, Steiner points, and possibly p (if we guessed it to be a tour point). If we guessed p to
be an allocation point, we allocate it as usual either to a Steiner point inside Q or to an allocation
portal on Q.

We keep the choice of Steiner points minimizing the total cost and write its value to T [Q, C]. There
are at most m2(r+1) choices for the location of the Steiner points, and for every such choice, all
calculations can be done in constant time. Therefore, case A2 takes time O(logO(1/ε) n) to compute
whenever it occurs.

Case B. σ = recurse and |P ∩Q| ≥ 2. This is a divide-and-conquer step quite similar to case B1
in Section 5.1. We split the square into its four children, go through all quadruples of configurations
which comply with each other and C, and minimize the sum of the four values T [Qi, Ci]. For C fixed,
there are (O(logO(1/ε) n))4 choices for the configurations of its children, and for every such choice



25

all calculations can be done in constant time. Hence case B1 takes time O(logO(1/ε) n) to compute
whenever it occurs.

It immediately follows that the complexity of our dynamic program is O(n logO(1/ε) n). The ap-
proximation ratio can be bounded as in [4] resp. [5], since all errors are of order O (|Q|/m) and can
be charged to the line segment crossed by the corresponding allocation or tour edge as in Arora’s
original argument. There is one exception to this statement: If the single input point p in case A2
is allocated to a Steiner point within the same square, its allocation edge does not cross any square
boundary to which its error can be charged. However, if this occurs there is at least one tour edge
crossing the square boundary to which we may charge the error. This does not spoil the analysis
given in [4] and [5].

7. Concluding Remarks

It is easily checked that our PTAS for VRAP extends to higher dimensions with minimal modifi-
cations. The running time increases to O

(
n logd+3 n

)
, as the range searching in Lemma 19 takes

time O
(
logd n

)
per cell in dimension d. This can be reduced by a factor of O (log n) if β(p) = β(q)

for all p, q ∈ P , since then it suffices to count the number of points in a given cell (see [2]).

Our PTAS for Steiner VRAP extends to higher dimensions analogously to Arora’s PTAS for TSP
[4]. In particular, Lemma 21 extends similarly to Lemma 3 in [4] to any dimension d, yielding a
complexity of O(n logξ(d,ε) n) with ξ(d, ε) = O(

√
d/ε)d−1. As these extensions are completely along

the lines of [4], we omit the details here.

Lastly, our algorithms can be trivially derandomized by enumerating all O
(
nd
)

choices for the
initial random shift of the zoom, respectively quad tree.

References

[1] P. K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry. CRC Press, Boca Raton, FL, 2nd edition, 2004.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223 of Contemporary Mathemat-
ics, pages 1–56. American Mathematical Socienty, Providence, RI, 1999.

[3] A. Armon, A. Avidor, and O. Schwartz. Cooperative TSP. In Proceedings of the 14th Annual European Symposium
on Algorithms, pages 40–51, 2006.

[4] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems.
Journal of the ACM, 45(5):753–782, 1998.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and related problems. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 106–113, 1998.

[6] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short, thin, and lanky. In
Proceedings of the 27th annual ACM Symposium on Theory of Computing, pages 489–498, 1995.

[7] J. E. Beasley and E. Nascimento. The vehicle routing allocation problem: a unifying framework. TOP, 4:65–86,
1996.

[8] L. R. Foulds, S. W. Wallace, J. Wilson, and L. Sagvolden. Bookmobile routing and scheduling in Buskerud County,
Norway. In Proceeding of the 36th Annual Conference of the Operational Research Society of New Zealand, pages
67–77, 2001.

[9] M. Garey, R. Graham, and D. Johnson. Some NP-complete geometric problems. In Proceedings of the 8th Annual
ACM Symposium on Theory of Computing, pages 10–22, 1976.

[10] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for constructing sparse
geometric spanners. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, pages 163–174,
2000.

[11] S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the euclidean k-median problem. In
Proceedings of the 7th Annual European Symposium on Algorithms, pages 378–389, 1999.



26

[12] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approx-
imation scheme for geometric TSP, k-MST and related problems. SIAM Journal on Computing, 28(4):1298–1309,
1999.

[13] S. B. Rao and W. D. Smith. Approximating geometrical graphs via ’spanners’ and ’banyans’. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pages 106–113, 1998.

[14] J. Remy, R. Spöhel, and A. Weißl. On Euclidean vehicle routing with allocation. In Algorithms and Data Struc-
tures, volume 4619 of Lecture Notes in Comput. Sci., pages 601–612. Springer, Berlin, 2007.

[15] J. Tipping. Scheduling and routing grass mowers around Christchurch. In Proceeding of the 37th Annual Confer-
ence of the Operational Research Society of New Zealand, 2002.

[16] L. Vogt, C. A. Poojari, and J. E. Beasley. A tabu search algorithm for the single vehicle routing allocation
problem. Journal of the Operational Research Society, to appear.


	1. Introduction
	Our methods
	Related Work
	Organization of this Paper

	2. Perturbation
	3. Zoom Trees and Portal-Respecting Allocations
	3.1. Concepts and Results
	3.2. Proof of Lemma 9

	4. VRAP on Straight-Line Graphs
	4.1. Concepts and Results
	4.2. Proof of Lemma 17

	5. A PTAS for VRAP
	5.1. Dynamic Programming
	5.2. Analysis

	6. Steiner VRAP
	7. Concluding Remarks
	References

