Wege finden in Tournament-Graphen

Sommerakademie Rot an der Rot - AG 1
Wieviel Platz brauchen Algorithmen wirklich?

Dmitrijs Dmitrenko

9. August 2010

1 Introduction

1.1 Tournament-Graphs and Their Paths

- Directed graph obtained by assigning a direction for each edge in an undirected complete graph
- Directed graph in which every pair of vertices is connected by a single directed edge
- Emerges e.g. when knights fight with each other, showing who
 has won against whom

1.2 Problem Description - Knights' Tournament Example

- Knights are nodes, wins are edges
- Direction of the edge defines the victory
- Indirect wins:
- Arthur beats Bertha

- Bertha beats Charles
- Charles beats Arthur

1.3 How Difficult Is It to Tell Whether a Path Exists?

- The reachability problem (REACH) for finite directed graphs is NL-complete
- If the independence number of finite directed graphs is bounded by a constant k, the REACH complexity is much lower - first order definable for all k
- Formally, for each k the language $R E A C H_{a \leq k}:=R E A C H \cap\{\langle G, s, t\rangle \mid \alpha(G) \leq k\}$ is first order definable, where \rangle denotes a standard binary encoding
- Such languages can be decided by $A C^{0}$-circuits, in constant parallel time on concurrentread, concurrent-write parallel random access machines (CRCW-PRAMs), and in logarithmic space
- Succinctly represented graphs are given indirectly via a program or a circuit that decides the edge relation of the graph
- SUCCINT-REACH is PSPACE-complete

1.4 How Difficult Is It To Construct a Path?

- A simple algorithm can be applied:
- Start at source
- Check, whether the target can be reached from the successor
- Make a suitable successor a current vertex
- Repeat, until the target is reached

Path Construction Issues

- A correct algorithm does not move to any successor, but to the successor that is nearest to the target, searching the shortest path
- A corrected algorithm does not only produce some path, but the shortest one
- A path between any two connected vertices can be constructed in logarithmic space in graphs with bounded independence number (logspace approximation scheme)

1.5 How Difficult Is It To Construct a Shortest Path?

- Constructing the shortest path in the tournament graph is as difficult as performing the same task in the arbitrary graph
- The complexity of constructing the shortest path depends on the complexity of the distance problem: DISTANCE $E_{\text {tourn }}:=\{\langle G, s, t, d\rangle \mid G$ is a tournament in which there is a path from s to t of length at most d\}
- This problem is NL-complete
- The succinct version of DISTANCE tourn is PSPACE-complete

2 Graph-Theoretic Terminology and Known Results

- A (directed) graph is a nonempty set V of vertices together with a set $E \subseteq V \times V$ of directed edges
- A graph is undirected if its edge relation is symmetric
- A forest is an undirected, acyclic graph
- A tree is a connected forest
- A path of length l in a graph $G=(V, E)$ is a sequence $\left(v_{0}, \ldots, v_{l}\right)$ of distinct vertices with $\left(v_{i}, v_{i+1}\right) \in E$ for $i \in\{0, \ldots, l-1\}$
- A vertex t is reachable from a vertex s if there is a path from s to t
- The distance $d(s, t)$ of two vertices is the length of the shortest path between them or ∞, if no path exists
- For $i \in \mathbb{N}$, a vertex $u \in V$ is said to \mathbf{i}-dominate a vertex $v \in V$ if there is a path from u to v of length at most i
- A set $U \subseteq V$ is an i-dominating set for G if every vertex $v \in V$ is i-dominated by some vertex $u \in U$
- The i-domination number $\beta_{i}(G)$ is the minimal size of an i-dominating set for G
- A set $U \subseteq V$ is an independent set if there is no edge in E connecting vertices in U
- The maximal size of independent sets in G is its independence number $\alpha(G)$

Tournament Graphs

- A tournament is a graph with exactly one edge between any two different vertices and $(v, v) \notin E$ for all $v \in V$
- The name tournament originates from such a graph's interpretation as the outcome of a round-robin tournament in which every player encounters every other player exactly once, and in which no draws occur
- Any tournament on a finite number n of vertices contains a Hamiltonian path, i.e., directed path on all n vertices
- A tournament in which $((a \rightarrow b)$ and $(b \rightarrow c)) \Rightarrow(a \rightarrow c)$ is called transitive. The following statements are equivalent for a tournament T on n vertices:

1. T is transitive
2. T is acyclic
3. T does not contain a cycle of length 3
4. The score sequence (set of outdegrees) of T is $\{0,1,2, \ldots, n-1\}$
5. T has exactly one Hamiltonian path

- A tournament for which every player loses at least one game is called a 1-paradoxical tournament, k-paradoxical if for every k-element subset S of V there is a vertex v_{0} in $V \backslash S$ such that $v_{0} \rightarrow v$ for all $v \in S$
- The score sequence of a tournament is the nondecreasing sequence of outdegrees of the vertices of a tournament
- The score set of a tournament is the set of integers that are the outdegrees of vertices in that tournament

Fact: Let $G=(V, E)$ be a finite graph with at least two vertices, $n:=|V|, \alpha:=\alpha(G)$, and $c:=\left(\alpha^{2}+\alpha\right) /\left(\alpha^{2}+\alpha-1\right)$. Then

1. $\beta_{1}(G) \leq\left\lceil\log _{c} n\right\rceil$ and
2. $\beta_{2}(G) \leq \alpha$

3 Complexity of the Approximation Problem

- Both finding, whether a path between two vertices exists and the construction of such a path in graphs with bounded independence number can be done in logarithmic space
- The shortest path can be constructed only if $L=N L$
- It is possible to find a path that is approximately as long as the shortest path
- There is a logspace approximation scheme for constructing paths whose length is as close to the length of the shortest path as one would like

Theorem: For all k there exists a deterministic Turing machine M with read-only access to the input tape and write-only access to the output tape such that:

1. On input $\langle G, s, t, m\rangle$ with $\langle G, s, t\rangle \in \mathrm{REACH}_{\alpha \leq k}$ and $m \geq 1$, it outputs a path from s to t of length at most $(1+1 / m) d(s, t)$
2. On input $\langle G, s, t, m\rangle$ with $\langle G, s, t\rangle \notin \operatorname{REACH}_{\alpha \leq k}$ it outputs 'no path exists'
3. It uses space $O(\log m \log n)$ on the work tapes, where n is the number of vertices in G

4 Complexity of the Distance Problem

- Decision of whether the distance of two vertices in a graph is smaller than a given input number
- This problem is NL-complete even for tournaments
- The succint version of this problem is PSPACE-complete
- We can easily solve the distance problem, if we have oracle access to an algorithm that constructs shortest paths
- The logspace algorithm for constructing shortest path in tournaments is impossible, unless L = NL

5 Conclusion

- Checking whether a path exists in a given graph can be done using AC^{0}-circuits
- Constructing a path between two vertices can be done in logarithmic space
- Constructing the shortest path in logarithmic space is impossible, unless $L=N L$
- The problem of shortest paths in graphs with bounded independence number cannot be solved exactly in logarithmic space (unless $L=N L$), but it can be approximated well: there exists a logspace approximation scheme for it
- The distance problem for directed graphs is just as hard as the reachability problem for directed graphs

