FROM PETRI NETS TO POLYNOMIALS: MODELING, ALGORITHMS, AND COMPLEXITY

Ernst W. Mayr
Fakultät für Informatik
TU München
http://www.in.tum.de/~mayr/

OUTLINE OF TALK

x some basics of polynomial ideals
\times Petri nets and binomial ideals, and

* complexity theoretic consequences of this relationship
* Gröbner bases and their complexity
* modeling power of polynomial ideals
* recent trends and results

OUTLINE OF TALK

x some basics of polynomial ideals
x Petri nets and binomial ideals, and

* complexity theoretic consequences of this relationship
* Gröbner bases and their complexity
\times modeling power of polynomial ideals
x recent trends and results

Polynomial Ideals

Given: A finite set of polynomials

$$
p_{1}, \ldots, p_{h} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]
$$

and a test polynomial p. The ideal

$$
\left\langle p_{1}, \ldots, p_{h}\right\rangle
$$

generated by the p_{i} is the set of all polynomials q which can be written

$$
q=\sum_{i=1}^{h} g_{i} p_{i}
$$

with polynomials $g_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

Examples

- The ideal generated in $\mathbb{Q}[x, y]$ by the two polynomials

$$
p_{1}=x^{2} \quad \text { and } \quad p_{2}=y
$$

is the set of all those polynomials all of whose monomials are divisible by x^{2} or y.

Examples

- The ideal generated in $\mathbb{Q}[x, y]$ by the two polynomials

$$
p_{1}=x^{2} \quad \text { and } \quad p_{2}=y
$$

is the set of all those polynomials all of whose monomials are divisible by x^{2} or y.

- We have:

$$
\begin{aligned}
y^{2}-x z & =\left(y+x^{2}\right)\left(y-x^{2}\right)-x\left(z-x^{3}\right) \\
& =\left(y+x^{2}\right) \cdot p_{1}-x \cdot p_{2} \\
& \in\left\langle p_{1}, p_{2}\right\rangle
\end{aligned}
$$

Thus

$$
y^{2}-x z \in\left\langle y-x^{2}, z-x^{3}\right\rangle .
$$

A Graphical Example

We consider the ideal in \mathbb{R}^{3} generated by the polynomials

$$
\begin{aligned}
& p_{1}: \quad z^{2}-8 z-13 / 10 x+y^{2}+16, \\
& p_{2}: \quad z-2 x^{4}-4 y^{2} x^{2}+4 x^{2}-2 y^{4}+4 y^{2}-5, \text { and } \\
& p_{3}: z-x-3 .
\end{aligned}
$$

The Zeroes of p_{1}, p_{2}, and p_{3}

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^{n}$ of a (finite) set of polynomials $\in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right.$ is called an (algebraic) variety.

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^{n}$ of a (finite) set of polynomials $\in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right.$ is called an (algebraic) variety.

Definition: The radical $\sqrt{\mathcal{I}}$ of an ideal $\mathcal{I} \subseteq \mathcal{K}[\mathbf{x}]$ is the ideal

$$
\left\{p \in K[\mathbf{x}] ; p^{k} \in \mathcal{I} \text { for some } k \in \mathbb{N}\right\}
$$

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^{n}$ of a (finite) set of polynomials $\in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right.$ is called an (algebraic) variety.

Definition: The radical $\sqrt{\mathcal{I}}$ of an ideal $\mathcal{I} \subseteq \mathcal{K}[\mathbf{x}]$ is the ideal

$$
\left\{p \in K[\mathbf{x}] ; p^{k} \in \mathcal{I} \text { for some } k \in \mathbb{N}\right\}
$$

Let K be some algebraically closed field. Then, by the strong version of Hilbert's Nullstellensatz, there is a one-to-one correspondence between the radical ideals in $K\left[x_{1}, \ldots, x_{n}\right]$ and the algebraic varieties in \mathbb{C}^{n}.

Polynomial Ideal Membership Problem

Let polynomials $p, p_{1}, \ldots, p_{w} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be given.

- Decision problem:

$$
\text { Is } p \in\left\langle p_{1}, \ldots, p_{w}\right\rangle \text { ? }
$$

Polynomial Ideal Membership Problem

Let polynomials $p, p_{1}, \ldots, p_{w} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be given.

- Decision problem:

$$
\text { Is } p \in\left\langle p_{1}, \ldots, p_{w}\right\rangle ?
$$

- Representation problem:

Determine $g_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that $p=\sum_{i=1}^{w} g_{i} p_{i}$.

OUTLINE OF TALK

x some basics of polynomial ideals
\times Petri nets and binomial ideals
\times complexity theoretic consequences of this relationship
x Gröbner bases and their complexity
\times modeling power of polynomial ideals
x recent trends and results

BINOMIAL IDEALS

* Binomial polynomials are polynomials which are the difference of two monomials
* Binomial ideals are ideals generated by binomial polynomials
* Binomials can be thought of as specifying (symmetric, i.e., Thue) commutative replacement systems
* Every polynomial can be represented by (a system of) trinomials

Petri Nets and VAS

Petri Nets and VAS

Petri Nets and VAS

marking: number of tokens on places
firing of transition: marking change
reachability set: set of reachable markings
Reversible PNs correspond to systems of binomials:
Symbols: s_{1}, s_{2}, s_{3}
congruences: binomials:

$$
\begin{aligned}
s_{1} & \Leftrightarrow s_{2} s_{3} & p_{1} & =s_{2} s_{3}-s_{1} \\
s_{2} & \Leftrightarrow s_{2} s_{3} & p_{2} & =s_{2} s_{3}-s_{2} \\
s_{2} s_{3}^{2} & \Leftrightarrow s_{1} & p_{3} & =s_{1}-s_{2} s_{3}^{2}
\end{aligned}
$$

SOME FACTS ABOUT PETRI NETS

* invented by Carl Adam Petri in 1962
* greatly advanced by the MIT Project MAC
× numerous applications and uses, like
+ modeling program synchronization
+ modeling a Berlin beer brewery
+ modeling the Murmansk economic region
+ modeling enzyme action and metabolism of cells
* also see
http://www.informatik.uni-hamburg.de/TGI/pnbib/

OUTLINE OF TALK

* some basics of polynomial ideals
x Petri nets and binomial ideals
* complexity theoretic consequences of this relationship
x Gröbner bases and their complexity
\times modeling power of polynomial ideals
x recent trends and results

SOME FACTS ABOUT PETRI-NET COMPLEXITY

* The reachability problem for PNs is decidable: M [1980]
* simple generalizations of the model make the reachability problem undecidable
The containment and equivalence problems for PNs are undecidable: Hack [1976]
These problems are non-primitive recursive even for finite reachability sets: M [1981]

SOME RESULTS

* upper bounds for PIMP:
+ decidability: G. Hermann [1926]
+ doubly exponential degree bound with coefficients in Q: Hermann [1926]
+ exponential degree bound for special p : Brownawell[1987], Heintz et al. [1988], Berenstein/Yger [1988]
+ exponential space upper bound with coefficients in Q, polynomial for special p:M [1988]
* upper bound for PN reachability:
+ decidability: M [1980]
+ exponential space for reversible PN: M/Meyer [1982]

SOME MORE RESULTS

* lower bounds for PIMP:
+ doubly exponential degree lower bound in pure difference binomial ideals: M/Meyer [1982]
+ exponential space lower bound: M/Meyer [1982]
* lower bounds for PN reachability:
+ exponential space lower bound for general PN: Lipton [1974]
+ Exponential space lower bound for reversible PN: M/Meyer [1982]

FURTHER RESULTS FOR POLYNOMIAL IDEAL MEMBERSHIP

* PIMP is in PSPACE for:
+ homogeneous ideals (and complete): M [1988]
+ ideals of constant dimension: Berenstein/Yger [1990]
+ special cases, like $p=1$: Brownawell [1987]
The PI triviality problem is in the second level of the polynomial hierarchy: Koiran [1996]

OUTLINE OF TALK

x some basics of polynomial ideals
\times Petri nets and binomial ideals
x complexity theoretic consequences of this relationship

* Gröbner bases and their complexity
\times modeling power of polynomial ideals
\times recent trends and results

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$
(ii) Let m, m_{1}, m_{2} be terms with $m_{1} \prec m_{2}$. Then

$$
m m_{1} \prec m m_{2}
$$

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$
(ii) Let m, m_{1}, m_{2} be terms with $m_{1} \prec m_{2}$. Then

$$
m m_{1} \prec m m_{2}
$$

Examples:

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$
(ii) Let m, m_{1}, m_{2} be terms with $m_{1} \prec m_{2}$. Then

$$
m m_{1} \prec m m_{2}
$$

Examples:

1. lex: $x_{1}^{2} \succ x_{1} x_{2}^{3} x_{3}^{1023}$

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$
(ii) Let m, m_{1}, m_{2} be terms with $m_{1} \prec m_{2}$. Then

$$
m m_{1} \prec m m_{2}
$$

Examples:

1. lex: $x_{1}^{2} \succ x_{1} x_{2}^{3} x_{3}^{1023}$
2. grevlex: $x_{2}^{3} \succ x_{1}$ and $x_{1} x_{2} x_{3} \succ x_{1} x_{3}^{2}$

Gröbner Bases I

Admissible term ordering:
(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$
(ii) Let m, m_{1}, m_{2} be terms with $m_{1} \prec m_{2}$. Then

$$
m m_{1} \prec m m_{2}
$$

Examples:

1. lex: $x_{1}^{2} \succ x_{1} x_{2}^{3} x_{3}^{1023}$
2. grevlex: $x_{2}^{3} \succ x_{1}$ and $x_{1} x_{2} x_{3} \succ x_{1} x_{3}^{2}$

Arrange the monomials in polynomials according to \prec in decreasing order.

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term $l t(g)$ divides one of the momomials m of f. The reduct is

$$
\tilde{f}=f-\frac{m}{l t(g)} \cdot g
$$

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term $l t(g)$ divides one of the momomials m of f. The reduct is

$$
\tilde{f}=f-\frac{m}{l t(g)} \cdot g
$$

2. A polynomial f is reducible by a set G of polynomials if there is a sequence $g=g^{(0)}, g^{(1)}, \ldots, g^{(r)}, r \geq 1$, such that each $g^{(i)}$ is the reduct of $g^{(i-1)}$ by one of the polynomials in G.

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term $l t(g)$ divides one of the momomials m of f. The reduct is

$$
\tilde{f}=f-\frac{m}{l t(g)} \cdot g
$$

2. A polynomial f is reducible by a set G of polynomials if there is a sequence $g=g^{(0)}, g^{(1)}, \ldots, g^{(r)}, r \geq 1$, such that each $g^{(i)}$ is the reduct of $g^{(i-1)}$ by one of the polynomials in G.
3. A polynomial f is in normal form wrt a set G of polynomials if it cannot be reduced by G.

Gröbner Bases II

Definition:

Let I be an ideal in $\mathbb{Q}[x]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible term ordering. A set $G=\left\{g_{1}, \ldots, g_{r}\right\}$ of polynomials in I is called a Gröbner basis of $I($ wrt $\prec)$ if for all $f \in \mathbb{Q}[x]$ the normal form of f wrt G is uniquely determined.

Gröbner Bases II

Definition:

Let I be an ideal in $\mathbb{Q}[x]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible term ordering. A set $G=\left\{g_{1}, \ldots, g_{r}\right\}$ of polynomials in I is called a Gröbner basis of I (wrt \prec) if for all $f \in \mathbb{Q}[x]$ the normal form of f wrt G is uniquely determined.

Remark:

Thus, in particular, the normal form does not depend on the order of the reductions by the $g \in G$.

Further Results

- exponential space algorithm for the computation of Gröbner bases: Kühnle/M [1996],
- exponential space bounds also result for a number of ideal operations, like intersection, union, quotient, etc.
- PSPACE algorithms for those cases where exponential degree bounds hold,
- the bounds also hold for characteristic $\neq 0$ (but infinite fields).

OUTLINE OF TALK

x some basics of polynomial ideals
x Petri nets and binomial ideals

* complexity theoretic consequences of this relationship
* Gröbner bases and their complexity
\times modeling power of polynomial ideals
\times recent trends and results

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?
One example is resolution calculus, with just one derivation rule (resolution for a variable x):

$$
\frac{x \vee A, \neg x \vee B}{A \vee B} .
$$

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?
One example is resolution calculus, with just one derivation rule (resolution for a variable x):

$$
\frac{x \vee A, \neg x \vee B}{A \vee B} .
$$

The goal is to derive the contradiction consisting of the empty clause (resolution of clauses x and $\neg x$).

Translation to Polynomial Ideals

- $\phi(x)=1-x$,
- $\phi(\neg x)=1-\phi(x)$,
- $\phi(x \vee y)=\phi(x) \phi(y)$,
- and with DeMorgan:

$$
\phi(x \wedge y)=\phi(\neg(\neg x \vee \neg y))=\phi(x)+\phi(y)-\phi(x) \phi(y)
$$

Translation to Polynomial Ideals

- $\phi(x)=1-x$,
- $\phi(\neg x)=1-\phi(x)$,
- $\phi(x \vee y)=\phi(x) \phi(y)$,
- and with DeMorgan:

$$
\phi(x \wedge y)=\phi(\neg(\neg x \vee \neg y))=\phi(x)+\phi(y)-\phi(x) \phi(y)
$$

Question: Does the ideal generated by these polynomials contain false, i.e., the constant polynomial 1 ?

Algebraic Derivation Systems

We consider polynomial rings in several variables over GF(2), including the Fermat polynomials $x_{i}^{2}-x_{i}=0$.

Theorem: Let polynomials $p, p_{1}, \ldots, p_{w} \in G F(2)\left[x_{1}, \ldots, x_{n}\right]$ be given. The word problem

$$
\text { Is } p \in\left\langle p_{1}, \ldots, p_{w}\right\rangle ?
$$

is co-NP-complete.

Algebraic Derivation Systems

We consider polynomial rings in several variables over GF(2), including the Fermat polynomials $x_{i}^{2}-x_{i}=0$.

Theorem: Let polynomials $p, p_{1}, \ldots, p_{w} \in G F(2)\left[x_{1}, \ldots, x_{n}\right]$ be given. The word problem

$$
\text { Is } p \in\left\langle p_{1}, \ldots, p_{w}\right\rangle ?
$$

is co-NP-complete.
Theorem: The radical word problem

$$
\text { Is } p \in \sqrt{\left\langle p_{1}, \ldots, p_{w}\right\rangle} ?
$$

is co-NP-complete.

Properties of Algebraic Derivation Systems

Theorem: For each ring R, Frege proofs (and extended Frege proofs) can be simulated efficiently by algebraic derivations of polynomial length.

Properties of Algebraic Derivation Systems

Theorem: For each ring R, Frege proofs (and extended Frege proofs) can be simulated efficiently by algebraic derivations of polynomial length.

Observation: There exist examples, for which algebraic derivation systems (or Gröbner proof systems) are considerably more efficient (asymptotically) than resolution.

FURTHER APPLICATIONS

* Geometric design
* Computation of the possible movements of robots or multi-joint robot arms
* Modeling of the electrical behavior of integrated circuits
* Modeling of carbon rings and their degrees of freedom in chemistry

CONT'D

* Application of involutive Gröbner bases for the solution of partial differential equations in nuclear physics
* Combinatorial optimization
* Coding theory
* Modeling of combinatorial graph properties

SOME OPEN PROBLEMS

* translate new degree bounds (for polynomials over rings not fields) into space efficient algorithms
* develop and analyze algorithms for ideal operations
* complexity of radical ideals
* complexity of toric ideals

THE END!

Thank you

for your

 attention!