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Polynomial Ideals

Given: A finite set of polynomials

p1, . . . , ph ∈ Q[x1, . . . , xn]

and a test polynomial p. The ideal

〈p1, . . . , ph〉

generated by the pi is the set of all polynomials q which can
be written

q =
h∑

i=1

gipi

with polynomials gi ∈ Q[x1, . . . , xn].
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Examples

• The ideal generated in Q[x, y] by the two polynomials

p1 = x2 and p2 = y

is the set of all those polynomials all of whose monomials
are divisible by x2 or y.
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Examples

• The ideal generated in Q[x, y] by the two polynomials

p1 = x2 and p2 = y

is the set of all those polynomials all of whose monomials
are divisible by x2 or y.

• We have:

y2 − xz = (y + x2)(y − x2) − x(z − x3)

= (y + x2) · p1 − x · p2

∈ 〈p1, p2〉

Thus

y2 − xz ∈ 〈y − x2, z − x3〉 .
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A Graphical Example

We consider the ideal in R3 generated by the polynomials

p1: z2 − 8z − 13/10x + y2 + 16,

p2: z − 2x4 − 4y2x2 + 4x2 − 2y4 + 4y2 − 5, and

p3: z − x − 3 .
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The Zeroes of p1, p2, and p3
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Algebraic Varieties

Definition: The common zeroes ∈ Cn of a (finite) set of
polynomials ∈ C[x1, . . . , xn is called an (algebraic) variety.

N

C
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Algebraic Varieties
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Definition: The radical
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Algebraic Varieties

Definition: The common zeroes ∈ Cn of a (finite) set of
polynomials ∈ C[x1, . . . , xn is called an (algebraic) variety.

Definition: The radical
√
I of an ideal I ⊆ K[x] is the ideal

{p ∈ K[x]; pk ∈ I for some k ∈ N} .

Let K be some algebraically closed field. Then, by the strong
version of Hilbert’s Nullstellensatz, there is a one-to-one
correspondence between the radical ideals in K[x1, . . . , xn]

and the algebraic varieties in Cn.
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Polynomial Ideal Membership Problem

Let polynomials p, p1, . . . , pw ∈ Q[x1, . . . , xn] be given.

◮ Decision problem:

�

�

�

�
Is p ∈ 〈p1, . . . , pw〉?

Q
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Polynomial Ideal Membership Problem

Let polynomials p, p1, . . . , pw ∈ Q[x1, . . . , xn] be given.

◮ Decision problem:

�

�

�

�
Is p ∈ 〈p1, . . . , pw〉?

◮ Representation problem:

�

�

�

�
Determine gi ∈ Q[x1, . . . , xn] such that p =

∑
w

i=1
gipi.
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BINOMIAL IDEALS

Binomial polynomials are polynomials which 
are the difference of two monomials
Binomial ideals are ideals generated by 
binomial polynomials
Binomials can be thought of as specifying 
(symmetric, i.e., Thue) commutative
replacement systems
Every polynomial can be represented by (a 
system of) trinomials

August 20, 2010
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Petri Nets and VAS
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Petri Nets and VAS

marking: number of tokens on places
firing of transition: marking change
reachability set: set of reachable markings

Reversible PNs correspond to systems of binomials:
Symbols: s1, s2, s3

congruences: binomials:

s1 ⇔ s2s3 p1 = s2s3 − s1

s2 ⇔ s2s3 p2 = s2s3 − s2

s2s
2

3
⇔ s1 p3 = s1 − s2s

2

3



SOME FACTS ABOUT PETRI NETS

invented by Carl Adam Petri in 1962
greatly advanced by the MIT Project MAC
numerous applications and uses, like

modeling program synchronization
modeling a Berlin beer brewery
modeling the Murmansk economic region
modeling enzyme action and metabolism of cells

also see
http://www.informatik.uni-hamburg.de/TGI/pnbib/

August 20, 2010
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SOME FACTS ABOUT PETRI-NET COMPLEXITY

The reachability problem for PNs is decidable: 
M [1980]
simple generalizations of the model make the 
reachability problem undecidable
The containment and equivalence problems for 
PNs are undecidable: Hack [1976]
These problems are non-primitive recursive 
even for finite reachability sets: M [1981]

August 20, 2010



SOME RESULTS

upper bounds for PIMP:
decidability: G. Hermann [1926]
doubly exponential degree bound with coefficients in Q: Hermann 
[1926]
exponential degree bound for special p : Brownawell[1987], Heintz et al. 
[1988], Berenstein/Yger [1988]
exponential space upper bound with coefficients in Q, polynomial for 
special p : M [1988]

upper bound for PN reachability:
decidability: M [1980]
exponential space for reversible PN: M/Meyer [1982]
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SOME MORE RESULTS

lower bounds for PIMP:
doubly exponential degree lower bound in pure 
difference binomial ideals: M/Meyer [1982]
exponential space lower bound: M/Meyer [1982]

lower bounds for PN reachability:
exponential space lower bound for general PN: 
Lipton [1974]
Exponential space lower bound for reversible PN: 
M/Meyer [1982]
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FURTHER RESULTS FOR POLYNOMIAL IDEAL 
MEMBERSHIP

PIMP is in PSPACE for:
homogeneous ideals (and complete): M [1988]
ideals of constant dimension: Berenstein/Yger
[1990]
special cases, like p = 1: Brownawell [1987]

The PI triviality problem is in the second 
level of the polynomial hierarchy: Koiran
[1996]
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Gröbner Bases I

Admissible term ordering:

(i) xπ(1) ≻ xπ(2) ≻ . . . ≻ xπ(n) ≻ 1
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1
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Gröbner Bases I

Admissible term ordering:

(i) xπ(1) ≻ xπ(2) ≻ . . . ≻ xπ(n) ≻ 1

(ii) Let m,m1,m2 be terms with m1 ≺ m2. Then

mm1 ≺ mm2 .

Examples:

1. lex: x2

1
≻ x1x

3

2
x1023

3

2. grevlex: x3

2
≻ x1 and x1x2x3 ≻ x1x

2

3

Arrange the monomials in polynomials according to ≺ in
decreasing order.
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Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if
the leading term lt(g) divides one of the momomials m of
f . The reduct is

f̃ = f − m

lt(g)
· g .
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Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if
the leading term lt(g) divides one of the momomials m of
f . The reduct is

f̃ = f − m

lt(g)
· g .

2. A polynomial f is reducible by a set G of polynomials if
there is a sequence g = g(0), g(1), . . . , g(r), r ≥ 1, such that
each g(i) is the reduct of g(i−1) by one of the polynomials in
G.
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Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if
the leading term lt(g) divides one of the momomials m of
f . The reduct is

f̃ = f − m

lt(g)
· g .

2. A polynomial f is reducible by a set G of polynomials if
there is a sequence g = g(0), g(1), . . . , g(r), r ≥ 1, such that
each g(i) is the reduct of g(i−1) by one of the polynomials in
G.

3. A polynomial f is in normal form wrt a set G of polynomials
if it cannot be reduced by G.
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Gröbner Bases II

Definition:

Let I be an ideal in Q[x] = Q[x1, . . . , xn] and ≺ an admissible
term ordering. A set G = {g1, . . . , gr} of polynomials in I is
called a Gröbner basis of I (wrt ≺) if for all f ∈ Q[x] the
normal form of f wrt G is uniquely determined.
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Gröbner Bases II

Definition:

Let I be an ideal in Q[x] = Q[x1, . . . , xn] and ≺ an admissible
term ordering. A set G = {g1, . . . , gr} of polynomials in I is
called a Gröbner basis of I (wrt ≺) if for all f ∈ Q[x] the
normal form of f wrt G is uniquely determined.

Remark:
Thus, in particular, the normal form does not depend on the
order of the reductions by the g ∈ G.
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Further Results

• exponential space algorithm for the computation of
Gröbner bases: Kühnle/M [1996],

• exponential space bounds also result for a number of ideal
operations, like intersection, union, quotient, etc.

• PSPACE algorithms for those cases where exponential
degree bounds hold,

• the bounds also hold for characteristic 6= 0 (but infinite
fields).
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Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for
it (in a standard proof system)?
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Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is:
Given a (propositional) tautology, what is a shortest proof for
it (in a standard proof system)?

What is a standard proof system?

One example is resolution calculus, with just one derivation
rule (resolution for a variable x):

x ∨ A, ¬x ∨ B

A ∨ B
.

The goal is to derive the contradiction consisting of the empty
clause (resolution of clauses x and ¬x).
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Translation to Polynomial Ideals

◮ φ(x) = 1 − x,

◮ φ(¬x) = 1 − φ(x),

◮ φ(x ∨ y) = φ(x)φ(y),

◮ and with DeMorgan:
φ(x ∧ y) = φ(¬(¬x ∨ ¬y)) = φ(x) + φ(y) − φ(x)φ(y)
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Translation to Polynomial Ideals

◮ φ(x) = 1 − x,

◮ φ(¬x) = 1 − φ(x),

◮ φ(x ∨ y) = φ(x)φ(y),

◮ and with DeMorgan:
φ(x ∧ y) = φ(¬(¬x ∨ ¬y)) = φ(x) + φ(y) − φ(x)φ(y)

Question: Does the ideal generated by these polynomials
contain false, i.e., the constant polynomial 1 ?
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Algebraic Derivation Systems

We consider polynomial rings in several variables over GF(2),
including the Fermat polynomials x2

i
− xi = 0.

Theorem: Let polynomials p, p1, . . . , pw ∈ GF (2)[x1, . . . , xn] be
given. The word problem

Is p ∈ 〈p1, . . . , pw〉 ?

is co-NP-complete.
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Algebraic Derivation Systems

We consider polynomial rings in several variables over GF(2),
including the Fermat polynomials x2

i
− xi = 0.

Theorem: Let polynomials p, p1, . . . , pw ∈ GF (2)[x1, . . . , xn] be
given. The word problem

Is p ∈ 〈p1, . . . , pw〉 ?

is co-NP-complete.

Theorem: The radical word problem

Is p ∈
√

〈p1, . . . , pw〉 ?

is co-NP-complete.



30

Properties of Algebraic Derivation
Systems

Theorem: For each ring R, Frege proofs (and extended Frege
proofs) can be simulated efficiently by algebraic derivations of
polynomial length.
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Properties of Algebraic Derivation
Systems

Theorem: For each ring R, Frege proofs (and extended Frege
proofs) can be simulated efficiently by algebraic derivations of
polynomial length.

Observation: There exist examples, for which algebraic
derivation systems (or Gröbner proof systems) are
considerably more efficient (asymptotically) than resolution.



FURTHER APPLICATIONS

Geometric design
Computation of the possible movements of 
robots or multi-joint robot arms
Modeling of the electrical behavior of 
integrated circuits
Modeling of carbon rings and their degrees of 
freedom in chemistry

August 20, 2010



… CONT’D

Application of involutive Gröbner bases for the 
solution of partial differential equations in 
nuclear physics
Combinatorial optimization
Coding theory
Modeling of combinatorial graph properties
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SOME OPEN PROBLEMS

translate new degree bounds (for polynomials 
over rings not fields) into space efficient 
algorithms
develop and analyze algorithms for ideal 
operations
complexity of radical ideals
complexity of toric ideals

August 20, 2010



THE END!

Thank you
for your

attention!
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