
Logspace Versions of the Theorems of
Bodlaender and Courcelle

Michael Elberfeld Andreas Jakoby Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck

D-23538 Lübeck, Germany
{elberfeld,jakoby,tantau}@tcs.uni-luebeck.de

August 19, 2010

Abstract

Bodlaender’s Theorem states that for every k there is a linear-time algorithm that decides
whether an input graph has tree width k and, if so, computes a width-k tree composition. Cour-
celle’s Theorem builds on Bodlaender’s Theorem and states that for every monadic second-order
formula φ and for every k there is a linear-time algorithm that decides whether a given logical
structure A of tree width at most k satisfies φ . We prove that both theorems still hold when “linear
time” is replaced by “logarithmic space.” The transfer of the powerful theoretical framework of
monadic second-order logic and bounded tree width to logarithmic space allows us to settle a
number of both old and recent open problems in the logspace world.

Keywords: logarithmic space, tree width, partial k-trees, monadic second-order logic, Bodlaen-
der’s Theorem, Courcelle’s Theorem

1 Introduction

For graphs of bounded tree width, a concept introduced by Robertson and Seymour [37] and known
under several different names such as partial k-trees, the computational complexity of many difficult
problems drops significantly compared to the same problem for general graphs. For instance, for
every k the NP-complete problem hamiltonicity can be solved in linear sequential and in logarithmic
parallel time when restricted to graphs of tree width at most k. The same is true for many other NP-
complete problems, see [10] for an overview. To achieve these time bounds, algorithms for problems
on graphs of bounded tree width need access to a tree decomposition of the input graph. Bodlaender’s
Theorem [8] states that for every fixed k, on input of a graph G of tree width at most k such a tree
decomposition can be computed in linear time. Note that k must, indeed, be a fixed constant since it
is NP-complete [2] to decide on input (G,k) whether G has tree width at most k.

These results have inspired researchers to investigate whether graphs of bounded tree width may
also be helpful in the study of logarithmic space. Here, “difficult” problems include normally easy ones
like reachability or matching. The hope is that these problems might be decidable by deterministic
logspace Turing machines (logspace dtms) for graphs of bounded tree width. Only partial results were
obtained, for instance for graphs of tree width 2 or for k-trees, and two 2010 papers [19, 20] identify
an analogue of Bodlaender’s Theorem for logarithmic space as the central piece missing in recent
advances in the study of logarithmic space. Our first main result is such an analogue:

Theorem 1.1. For every k≥ 1, there is a logspace dtm that on input of any graph G of tree width at
most k outputs a width-k tree decomposition of G.

1

The design of early efficient algorithms for problems on graphs of bounded tree width was a labori-
ous process involving complex, problem-dependent arguments. A breakthrough came with Courcelle’s
Theorem [17], which in conjunction with Bodlaender’s Theorem yields that all graph properties ex-
pressible in monadic second-order logic (mso-logic) can be solved in linear time on graphs of bounded
tree width. Since many graph properties are easily expressible in this logic, we get a simple, unified
framework for showing that all of these problems are efficiently solvable.

In the logspace world, the situation resembles the one before Courcelle’s work: each paper uses
similar, but still problem-dependent arguments to establish membership in L or at least in LOGCFL.
Our second main result is that Courcelle’s Theorem also holds for logarithmic space, enabling us to
apply the same unifying framework as for linear time:

Theorem 1.2. For every k ≥ 1 and every mso-formula φ , there is a logspace dtm that on input of
any logical structure A of tree width at most k decides whether A |= φ holds.

Courcelle’s original theorem has been generalized in different ways (known as functional, opti-
mization, counting, and other versions). We also prove such a generalized version, which we call
the cardinality version and which allows a wider range of applications than Theorem 1.2. For its
formulation we introduce the notion of solution histograms: Let φ(X1, . . . ,Xd) be an mso-formula
whose free predicate variables are exactly the Xi and let A be a logical structure with universe A.
Then histogram(A,φ) is the d-dimensional integer array whose entry at the d-dimensional index
(i1, . . . , id) ∈ {0, . . . , |A|}d tells us how many subsets S1, . . . ,Sd ⊆ A exist with |S1|= i1, . . . , |Sd |= id
and A |= φ(S1, . . . ,Sd). Observe that solution histograms store a lot of information about φ and A, in-
cluding the number of satisfying assignments for φ in the form of the sum of all entries. Also observe
that Theorem 1.2 is a special case of the following Theorem 1.3 for d = 0 since the 0-dimensional
solution histogram is just a single scalar that is 1 if A |= φ , and 0 otherwise.

Theorem 1.3 (Logspace Cardinality Version of Courcelle’s Theorem). For every k ≥ 1 and every
mso-formula φ(X1, . . . ,Xd), there is a logspace dtm that on input of any logical structure A of tree
width at most k outputs histogram(A,φ).

The above theorems make no claim concerning the behavior of the machines for input structures
that have a tree width larger than k, but the following lemma shows that this could be remedied:

Lemma 1.4. For every k ≥ 1 the language tree-width-k, which contains exactly the graphs of tree
width at most k, is L-complete under first-order reductions.

Our main technical contributions are the following: For the proof of the logspace version of
Bodlaender’s Theorem, the main difficulty lies in coming up with an appropriate notion of graph
separators and in showing how the recursive decomposition can be done in logarithmic space. We
side-step the recursion by reducing to a special version of the reachability problem for mangrove
graphs, which we show to lie in L. For the logspace cardinality version of Courcelle’s Theorem, we
show how computing the number of satisfying assignments relates to tree automata (a standard tool
in proofs of Courcelle’s Theorem) and how it can be reduced to evaluating an arithmetic tree whose
entries are tensors that are added and convoluted. This problem, in turn, can be reduced to evaluating
a normal arithmetic tree over addition and multiplication, a problem known to be logspace solvable.

Applications. Our results can be applied in a number of areas. Since in the present paper we focus
on proving the main theorems, we will not explore these applications in more detail. Nevertheless,
we below try to sketch their impact on some of these areas.

First, in parameterized complexity theory numerous problems like 3-colorable or hamiltonicity
can be shown to be fixed-parameter tractable with respect to the parameter “tree width” by expressing

2

the problems in mso-logic and applying Courcelle’s Theorem. By Theorem 1.2, all of these results
can be transferred to the logspace setting. Problems like dominating-set are also expressible as mso-
formulas, but now φ(X) holds if X is a dominating set and the question is whether φ can be satisfied
by an X having a certain size. The logspace cardinality version of Courcelle’s Theorem shows that
this problem can also be decided in logarithmic space. Thus, for every k the languages {G | tw(G)≤ k
and G is 3-colorable} and {(G,s) | tw(G)≤ k and G has a dominating set of size at most s} lie in L
and this is the case for many other problems. Even when a problem is not directly expressible in
mso-logic, it may still be possible to use Courcelle’s Theorem inside a larger algorithm. A simple
example is computing the chromatic number of tree width bounded graphs in logarithmic space: no
mso-formula φ(X) is known that expresses that a graph has chromatic number |X |, but it is easily
seen [22] that graphs of tree width k have chromatic number at most k + 1 and we can successively
test whether a graph is 1-, 2-, . . . , (k +1)-colorable to compute its chromatic number.

Second, a number of graph properties, such as reachability, can be expressed in mso-logic, but they
can already be checked efficiently on arbitrary graphs and applying Courcelle’s classical theorem yields
no new insights. From a logspace perspective, the situation is different: Applying Theorem 1.3 to the
formula φ(X) expressing that X is a simple path from s to t shows that the problem {(G,s, t) | tw(G)≤ k,
there is a path from s to t in G} lies in L. Indeed, on input of (G,s, t,d) we can even compute in
logarithmic space the exact number of simple paths from s to t of length exactly d. Another example
is the matching problem, where the mso-characterization allows us to compute the exact number of
perfect matchings of graphs of bounded tree width in logarithmic space.

Third, the logspace version of Courcelle’s Theorem has applications in the study of pseudopolyno-
mial NP-complete problems: The classical NP-complete problem knapsack is well-known to become
tractable when input numbers are coded in unary: unary-knapsack ∈ NL. Inspired by Cook’s conjec-
ture [16] that “a problem in NL which is probably not complete is the knapsack problem with unary
weights,” a line of research began to capture its complexity with specialized complexity classes lying
between L and NL [27, 15, 31], see also [33]. Our Theorem 1.3 shows that unary-subsetsum ∈ L:
Given unary-coded numbers a1, . . . , an and a target sum s, construct the graph consisting of n stars,
where the ith star has ai− 1 leafs, and the formula φ(X) expressing that X must always contain
a star completely or not at all. Then there is a satisfying assignment of cardinality s iff there is
a subset I ⊆ {1, . . . ,n} with ∑i∈I ai = s. Similar, but slightly more complex arguments show that
unary-knapsack ∈ L and also that unary-k-knapsack ∈ L for every k, where there are k knapsacks.

Related Work. The research on the difficulty of computing width-k tree decompositions was orig-
inally focussed on time complexity. The linear time bound of Bodlaender’s Theorem [8] is the best
possible result on the sequential time complexity and improves on previous results [2, 35]. Similarly,
the parallel time complexity was reduced in a line of papers [13, 6, 32, 9] to O(logn). Concerning the
space complexity, an algorithm of Gottlob et al. [23], which extends an algorithm of Wanke [39], shows
that computing width-k tree decompositions lies in the class LOGCFL = SAC1 ⊆ AC1. For the special
case of computing width-2 tree decompositions a logspace algorithm can be deduced from [28, 29],
together with Reingold’s algorithm [36].

Algorithmic variants of Courcelle’s Theorem also solve mso-definable counting and optimization
problems [3, 11, 18], similar to the cardinality version studied in the present paper. A recent sur-
vey [10] spans the time complexity of tree width related problems. The best result concerning the space
complexity of analogues of Courcelle’s Theorems is due to Wanke [39]. It places mso-definable deci-
sion problems for graphs of bounded tree width in LOGCFL. Additionally, mso-definable optimization
problems like vertex-cover on bounded tree width graphs lie in LOGCFL.

Only few problems were known to lie in L when restricted to graphs of bounded tree width. In [30]
we showed that the reachability problem, the shortest path, and also the longest path problems lie in L
when restricted to graphs of tree width 2. Das et al. [19] study k-trees, a special case of graphs of

3

tree width k, and show that for these graphs the reachability and the perfect matching problem and, if
the graph is a directed acyclic graph (dag), also the shortest and longest path problems lie in L. All
of these results are special cases of the logspace cardinality version of Courcelle’s Theorem.

Concerning our proof techniques, the idea of using separators in the construction of tree decompo-
sitions is used in many other papers [32, 35]. Mangroves are also used in the study of the isomorphism
problem for k-trees [4]. Our reduction in the logspace cardinality version of Courcelle’s Theorem is
a strong generalization of the reduction to {max,+}-trees that we first proposed in [30] and was later
also used in [19].

Organization of This Paper. In Section 3 we show that given a graph of tree width at most k,
we can compute a tree decomposition of width 4k +3, called an approximate tree decomposition, in
logarithmic space. In Section 4 we prove the logspace cardinality version of Courcelle’s Theorem.
The algorithms of this section work on approximate tree decompositions. In Section 5 we prove the
L-completeness of tree-width-k and the logspace version of Bodlaender’s Theorem by showing that
approximate tree decompositions can be turned into optimal ones in logarithmic space.

2 Preliminaries

In the following we shortly describe notations and concepts that are used in the present paper. For a
detailed discussion, we refer to the textbook of Flum and Grohe [22].

Structures and Monadic Second-Order Logic. A vocabulary τ is a set of relation symbols R
together with a mapping assigning an arity r ≥ 1 to each relation symbol. In slight abuse of notation,
we write R ∈ τ to indicate that R lies in τ and Rr ∈ τ to additionally indicate that R has arity r. A
(finite) τ-structure A = (A,RA1 , . . . ,RAm) consists of a nonempty, finite set A, the universe of A, and
for each relation symbol Rri

i ∈ τ a relation RAi ⊆ Ari . In the present paper we only consider finite
structures.

Let A be a τ-structure. Another τ-structure B is a substructure of A if B⊆ A and RB ⊆ RA holds
for all relations R ∈ τ . For a subset B⊆ A, the substructure of A that is induced on B has universe B
and for all Rr ∈ τ we have RB = RA∩Br. We denote it by A[B].

Monadic second-order logic (mso-logic) is the fragment of second-order logic where all variables
are either first-order variables x1, x2, . . . (also called element variables) or unary second-order variables
X1, X2, . . . (also called set variables). The mso-formulas over a vocabulary τ are inductively defined
as follows: The atomic formulas are of the forms x = y, X(z), R(x1, . . . ,xr), where x,y,z,x1, . . . ,xr

are element variables, X is a set variable, and Rr ∈ τ . Formulas are build from atomic formulas
by connectives (¬, ∧, ∨, →, ↔), element quantifiers (∃x, ∀x), and set quantifiers (∃X ,∀X). Bound
and free variables are defined as usual. We write φ(X1, . . . ,Xd) for a formula φ with free variables
X1, . . . ,Xd . For a vocabulary τ , a τ-structure A with universe A, a τ-formula φ(X1, . . . ,Xd), and sets
S1, . . . ,Sd ⊆ A, we write A |= φ(S1, . . . ,Sd) to indicate that φ holds in the structure A if each Xi is
interpreted as Si

For the special case of graphs, monadic second-order logic is also called mso1-logic and one can
additionally study the so-called mso2-logic where one may quantify not only over sets of vertices,
but also over sets of edges [26]. However, this logic is just a special case of mso-logic if we allow
arbitrary vocabularies τ , as we do in the present paper. Because of this, we only consider mso-logic
as defined above.

If we want structures to be processed by Turing machines, we need to encode them as strings.
This can be done by representing the elements of the universe A by numbers {0, . . . , |A|−1} and the
tuples of every relation RA by tuples of numbers.

4

Unless stated otherwise, we assume all numbers in inputs and outputs to be coded in binary.

Graphs and Trees. A directed graph is a pair (V,E), consisting of a set V of vertices and a set
E ⊆V ×V of edges. We write V (G) for G’s vertex set and E(G) for the edge set. We treat undirected
graphs as special cases of directed graphs, namely as directed graphs with a symmetric edge relation.
An undirected graph is connected if there exists a path between any two of its vertices. The components
C1, . . . , Cm of a graph G are its maximal connected subgraphs; the empty graph has zero components.
Graphs are special cases of logical structures, namely {E2}-structures G = (V,EG). The concept
subgraph and induced subgraph are inherited from general structures. The children of a vertex v of a
directed graph G = (V,E) are all vertices u with (v,u) ∈ E.

A tree is a directed graph T together with a distinguished root r ∈ V (T) such that for every
v ∈V (T) there exists exactly one path from r to v. In the present paper all trees are assumed to have
a distinguished root and are assumed to be directed. This is no loss of generality since undirected
trees (acyclic, connected, undirected graphs) can easily be rooted in logarithmic space. We use the
term nodes to refer to the vertices of a tree. A labeled tree with label alphabet Σ is a tree T together
with a mapping l : V (T)→ Σ.

The leafs of a tree are nodes without children; all other nodes are inner nodes. A tree is binary if
every inner node has exactly two children. In a binary tree, we may wish to distinguish between the
left and the right child of a node. In such a case, we call T a binary tree with distinguished left and
right children. Formally, T is a labeled tree where for every inner node exactly one of the children
has the label “is left child.” A tree is balanced if all root-to-leaf paths have the same length. Note
that balanced binary trees have depth

⌈
log2(|V (T)|+1)

⌉
.

Tree Automata. A (binary, bottom-up) tree automaton is a tuple M = (Q,Qa,q0,Σ,δ), where Q
is the set of states, Qa ⊆ Q is the set of accepting states, q0 is the initial state, Σ is the alphabet,
and δ : Q×Q×Σ→ Q is the state transition function. A tree automaton inductively assigns a state
to a labeled binary tree T with distinguished left and right children as follows: The empty tree has
state q0. The state of a nonempty tree with root r and root label l(r), left subtree state qleft, and right
subtree state qright is δ (qleft,qright, l(r)). The tree automaton accepts all trees to which it assigns a
state from Qa.

Tree Decompositions and the Gaifman Graph. The concept of tree decompositions of graphs was
introduced by Robertson and Seymour [37]; we use a generalized definition for logical structures [22]:

Definition 2.1 (Tree Decomposition). A tree decomposition of a τ-structure A is a labeled tree T
whose labeling function B : V (T)→{X | X ⊆ A} has the following properties:

1. For all a ∈ A, the induced subtree T
[
{n ∈V (T) | a ∈ B(n)}

]
is nonempty and connected.

2. For every Rr ∈ τ and every tuple (a1, . . . ,ar)∈ RA, there is an n∈V (T) with {a1, . . . ,ar}⊆ B(n).

The sets B(n) are called bags. The width of a tree decomposition T is maxn∈V (T) |B(n)|−1. The tree
width of a structure A, denoted by tw(A), is the minimum width over all its tree decompositions.
A class of τ-structures has bounded tree width if the tree width of all its elements is bounded by a
constant.

The Gaifman graph of a structureA is an undirected graph that has vertex set A and there is an edge
(a,a′) ∈ A×A iff one of the relations RA contains a tuple (a1, . . . ,ar) ∈ RA with a,a′ ∈ {a1, . . . ,ar}.
Since a tuple of r elements from the structure gives rise to a clique of size r in the Gaifman graph and
in a tree decomposition every clique is completely contained in some bag, the following fact holds:

Fact 2.2 ([22]). Let A be a structure. Then every tree decomposition of the Gaifman graph of A is
also a tree decomposition of A and vice versa.

5

3 Computing Approximate Tree Decompositions in Logarithmic Space

Bodlaender’s Theorem is typically proved in two steps: First, a linear-time algorithm is presented that
on input of a graph of tree width at most k computes a tree decomposition of width at most O(k),
called an approximate tree decomposition. Second, another linear-time algorithm is used to turn the
approximate tree decomposition into an optimal one. We proceed similarly: The present section is
devoted to a proof of Lemma 3.1 below, which states that approximate tree decompositions can be
computed in logspace. In Section 5 we will show how optimal tree decompositions can be computed.

Lemma 3.1. For every k≥ 1, there is a logspace dtm that on input of any structure A with tw(A)≤ k
outputs a tree decomposition for A

1. whose width is at most 4k +3 and
2. whose decomposition tree is binary and balanced.

For many applications, it suffices to have access to tree decompositions satisfying part 1 of the
lemma. However, for the proof of the logspace cardinality version of Courcelle’s Theorem in Section 4
we need access to tree decompositions of constant degree and logarithmic depth. Part 2 shows that
such tree decompositions can be obtained in logarithmic space.

In the following, for the proof of Lemma 3.1 we only consider undirected, connected graphs
instead of arbitrary logical structures, because a structure and its Gaifman graph have the same tree
decompositions [22] and because different components of a graph can be decomposed independently.

Algorithms for constructing tree decompositions often employ a specific notion of separators,
which are used to split a graph into smaller subgraphs for which tree decompositions can be computed
recursively. When one wants to transfer this idea to logarithmic space, one faces the problem that
both the recursion stack and the intermediate subgraphs are too large to store. We overcome these
problems in two ways: First, instead of avoiding deep recursions, we show how a special version of
the reachability problem in mangrove graphs can be used to identify the desired tree decomposition.
Second, we pick a notion of separators that allows us to represent subgraphs in logarithmic space.

3.1 Transitive Closures of Mangroves.

In our tree decomposition algorithm, the decomposition tree will be an induced subgraph of a larger
graph in which it is “hidden.” In order to recover the tree, we need to compute the set of vertices
reachable from a given vertex. For the mangrove graphs that arise in our proofs the best upper space
bound on the reachability problem is O(log2 n/ log logn), see [1], which is far from logarithmic. So,
our algorithms will need access to some kind of additional information. This information will be in
the form of what we call transitive closures of related vertices.

Mangrove M

Template for graphs R

A mangrove [1] is a dag in which there is at most one path between
any two vertices. In a mangrove, the subgraph Tr induced on all vertices
reachable from a given vertex r is a tree rooted at r. Let us say that two
vertices a and b of a mangrove are related if they are both present in some Tr,
that is, they are both reachable from some vertex r. We say that a graph R
is a transitive closure of the related vertices of M if the following holds:
Whenever a and b are related in M, then there is an edge from a to b in R iff
there is a non-empty path from a to b in M. The example on the right shows
a mangrove M at the top. All transitive closures R of M’s related vertices
can be obtained by arbitrarily adding edges in the lower “template” graph
along the dotted lines, which connect exactly the unrelated vertices of M.

Lemma 3.2. There is a logspace dtm that on input of any pair (M,R) consisting of a mangrove M
and a transitive closure R of M’s related vertices outputs the transitive closure of M.

6

Proof. Let a mangrove M and a transitive closure R of M’s related vertices be given as input as well
as two vertices a,b ∈V (M) = V (R). We claim that the following algorithm, which clearly needs only
logarithmic space, correctly decides whether there is a non-empty path from a to b in M:

1 current← a
2 while not (current,b) ∈ E(M) do
3 if there is exactly one v ∈V (M) with (current,v) ∈ E(M)∧ (v,b) ∈ E(R)
4 then current← v
5 else reject
6 accept

The vertex stored in current is always reachable from a in M and, thus, if the algorithm accepts, there
is a non-empty path from a to b in M. For the other direction suppose there is a path from a to b
in M. Starting with current = a, consider each child v of current in M. All of these children are
related to b via the common ancestor current. Thus, (v,b) ∈ E(R) holds iff there is a path from v to
b in M. This in turn holds for exactly one child v of current since M is a mangrove – namely for the
child on the unique path from a to b. This means that the variable current will successively be set to
the vertices on the path from a to b and the algorithm will accept.

Lemma 3.2 states that given a mangrove and a transitive closure of its related vertices, we can
compute the (exact) transitive closure of the mangrove. However, the algorithm may incorrectly accept
or reject when the input does not satisfy the promise that M is a mangrove and R is a transitive closure
of M’s related vertices. Although this situation does not arise in our proofs, for completeness we
include the following lemma, which states that we can detect whether an input is a mangrove with its
correct transitive closure.

Lemma 3.3. mangrove-and-tc = {(G,R) | G is a mangrove and R is its transitive closure} ∈ L.

Proof. A directed graph G is a mangrove if, and only if, for every vertex r the subgraph induced on
the vertices reachable from r in G is a tree rooted at r: First, if G is a mangrove, then in this subgraph
there is a unique path from r to every vertex, which is one possible definition of a rooted tree. Second,
if all of these subgraphs are trees, then G is acyclic and there cannot be two different paths from any
r to any other vertex.

The logspace algorithm for deciding mangrove-and-tc works as follows. On input (G,R), it first
tests whether all edges of G are also present in R and it tests whether (u,v) ∈ R∧ (v,w) ∈ R always
implies (u,v) ∈ R. If R passes these tests, we know its edge set is a superset of the transitive closure
of G. The second step of the algorithm is to iterate over all vertices r of G. Each time it considers the
subgraph Tr of G induced the vertex set {r}∪{v | (r,v) ∈ R}. This subgraph is the graph induced by
the vertices that R “claims” to be reachable from r in G. The algorithm checks whether Tr is, indeed,
a tree rooted at r – a property that is well known to be decidable in logarithmic space. If all Tr pass
the test, the algorithm accepts, otherwise is rejects.

For the correctness of the algorithm, just note that each Tr must contain at least the vertices
reachable from r in G because R is a superset of the transitive closure of G. However, if R is actually
too large and Tr contains at least one vertex v that is not reachable from r in G, then Tr is no longer
a tree rooted at r and the algorithm will reject. Thus, the algorithm only accepts if R is the transitive
closure of G. Finally, since all Tr are trees rooted at r, we can also conclude that G must be a
mangrove.

7

3.2 Descriptors and Descriptor Decompositions.

Let G = (V,E) be a connected undirected graph. A descriptor D in G is either (a) just a bag
B ⊆ V and called simple or (b) a pair (B,v) consisting of a bag B ⊆ V and a component selector
v ∈ V −B. We write B(D) for the bag of D. We say that D describes the following graph G(D):

V (D)

I(D)
b1

b3 v

b2

If D is simple, G(D) = G[B]. Otherwise let G(D) = G
[
V (C)∪B

]
where C is

the component of G[V −B] that contains v. We write V (D) for the vertex
set of the graph G(D). The interior I(D) of G(D) is V (D)−B(D). Let DG

denote the descriptor (∅,v0) where v0 is a chosen vertex of G. Note that
G(DG) = G since we assumed G to be connected. An example of a graph G,
a descriptor D = ({b1,b2,b3},v), and the sets V (D) and I(D) is shown right.
The graph G(D) is the induced subgraph G[V (D)].

Definition 3.4 (Descriptor Decomposition). Let G be a connected undirected graph. A descriptor
decomposition of G is a directed graph M whose vertices are descriptors in G, one of them is DG,
and where for every node D of M with children D1, . . . , Dm the following holds:

1. For each child Di, we have V (Di)⊆V (D) and I(Di)⊆ I(D) and at least one inclusion is proper.
2. For each child Di, the set V (Di) contains at least one vertex from I(D).
3. For each child Di, the set I(Di) is disjoint from all V (D j) for j 6= i.
4. Each edge in G(D) that is not between two vertices in B(D) must be present in some G(Di).

Observe that property 1 implies that all descriptor decompositions are dags.
We next prove that given a descriptor decomposition M of a graph G, the graph M[W] where W

is the set of all vertices reachable from DG in M “nearly forms a tree decomposition of G”: We only
need to add an internal vertex between each node and its children whose bag contains all “interactions”
between the children of the node. Formally, we define a graph T (M) as follows: For each descriptor D
reachable from DG in M, it contains two vertices Dnormal and Dinteract. If D1, . . . , Dm are the children
of D in M, then there are edges from Dnormal to Dinteract and from Dinteract to each Dnormal

i . Label
Dnormal with the bag B(D). Label Dinteract with the bag that contains all vertices present in at least two
of the sets in {B(D),B(D1), . . . ,B(Dm)}. Below, we show an example of a descriptor D, its children
D1, D2, and D3 in M, and their bags; as well as the resulting nodes and bags in T (M).

{a,b}

{a,c} {a,d} {c,d}

D

D1 D2 D3

Descriptors in M
and their bags

{a,b}

{a,c,d}

{a,c} {a,d} {c,d}

Dnormal

Dinteract

Dnormal
1 Dnormal

2 Dnormal
3

Nodes in T (M)
and their bags

Lemma 3.5. If M is a descriptor decomposition of G, then T (M) is a tree decomposition of G.

Proof. Our first claim is that M is a mangrove, which will imply that T (M) is a tree. By property 1
of descriptor decompositions, M is a dag. To prove that there is at most one path between any two
vertices of M, suppose there is a vertex Ds with two different children D1 and D2 such that a vertex
Dt is reachable from both. By property 2 of descriptor decompositions, G(Dt) contains at least one
v ∈ I(D1). By the third property, G(D2) does not contain v, but G(Dt) must be a subgraph of G(D2)
by the first property, which is a contradiction.

We claim that T (M) is a tree decomposition of G. Since we just saw that M is a mangrove, M[W]
where W is the set of all vertices reachable from DG in M is a tree and thus also T (M). We need to
check the two properties of a tree decomposition:

1. Consider the set of all nodes of T (M) whose bags contain some vertex v. It suffices to prove
that there is a unique node of T (M) whose bag contains v, but whose parent node’s bag does

8

not contain v. To see this, consider the set P of all nodes D of M[W] for which v ∈ I(D). This
set includes at least the root DG. By properties 1 and 3 of the descriptor decomposition M, the
set P forms a path in M, ending at a uniquely specified node D. Since v is not an isolated vertex
(G is connected), for at least one child Di of D the graph G(Di) must contain v. Since v is no
longer an interior vertex of Di, it must be in the bag B(Di). Now, if there is exactly one child Di

of D whose bag contains v, then Dnormal
i will be the only bag that contains v but whose parent’s

bag does not. Otherwise, if there are several children whose bags contain v, then Dinteract will
be the only bag containing v whose parent’s bag does not.

2. Consider any edge e of G. Since e is contained in G(DG) = G, there must be some node D
of M[W] such that e is contained in G(D), but not in G(D′) for any of its children Di (at
the latest, this is the case for some leaf of M[W]). Then by the fourth property of descriptor
decompositions, the edge e must be between two vertices in B(D).

Lemma 3.6. There is a logspace dtm that on input of any graph G together with a descriptor
decomposition M of G outputs T (M).

Proof. In Lemma 3.5 we proved that M is a mangrove. We claim that the following graph R is a
transitive closure of M’s related vertices: Its vertex set is V (M) and there is an edge from D to D′

in R iff D and D′ satisfy property 1 of Definition 3.4, that is, V (D′)⊆V (D) and I(D′)⊆ I(D) and at
least one of these two inclusions is proper. Then R is clearly a superset of the transitive closure of M.
Second, if there are two disjoint paths leading from a vertex Ds to two vertices D1 and D2, then, as
argued in Lemma 3.5, G(D1) and G(D2) each contains at least one vertex not contained in the other
graph. Thus, there is no edge between them in R.

Observe that the graph R is logspace-computable since Reingold’s algorithm [36] allows us to
check in logarithmic space on input of G and D and a vertex v whether v ∈ G(D). This allows us
to apply Lemma 3.2 to M and R in order to compute the set of vertices reachable from DG in M in
logarithmic space, yielding T (M).

By Lemmas 3.5 and 3.6, in order to compute a tree decomposition of a graph, it suffices to compute
a descriptor decomposition. We next show that such a descriptor decomposition can be obtained in
logarithmic space. As remarked earlier, algorithms for computing tree decompositions internally use
different kinds of separators. The ones we use are also known as balanced separators.

Definition 3.7. Let G be an undirected graph and let U ⊆V (G). A separator S⊆V (G) separates U
in G if each component of G[V (G)− S] contains at most |U |/2 vertices of U . An s-separator is a
separator of size at most s.

It is a folklore fact that for all G with tw(G)≤ k every U ⊆V (G) has a (k +1)-separator S in G.
We use the following convention in the remaining part of this paper: Whenever we write that a

dtm should “choose” some vertex or set, we mean that a deterministic choice is made. For instance,
we can always choose the lexicographically first vertex or set.

Definition 3.8 (Child descriptors). Let G be a connected undirected graph with tw(G)≤ k. We define
the child descriptors of a descriptor D in G as follows: If D is simple, it has no child descriptors.
Otherwise we call D small if |B(D)| ≤ 2k +2 and choose a (k +1)-separator S of V (D) in the graph
G(D); and we call D large if |B(D)|> 2k +2 and choose a (k +1)-separator S of B(D) in G(D). Let
C1 to Cm be the components of G[I(D)−S] = G

[
V (D)− (S∪B(D))

]
. For each i ∈ {1, . . . ,m} choose

a vertex vi ∈Ci and let Bi be the set of all vertices in B(D)∪S that are adjacent in G(D) to a vertex
from Ci. Then the descriptors (Bi,vi) are the child descriptors of D and, unless S⊆ B(D), additionally
the simple descriptor D0 = B(D)∪S.

9

b1

b2

v s1

=s2

.

B1C1 B2 C2

v1 b1 v2

b2

v s1

=s2

.

To the right, we show how child descriptors are constructed.
The left graph is G(D) for the small descriptor D = ({b1,b2},v).
The set S = {s1,s2} is a separator of V (D) in G(D). Removing
the highlighted set B(D)∪S yields the two components C1 and C2.
The sets B1 and B2 contain the vertices from B(D)∪ S adjacent
to C1 and C2, respectively. The child descriptors of D are D1 =
({b1,b2,s1},v1), D2 = ({b2,s1},v2), and D0 = {b1,b2,s1}.

Lemma 3.9 (Size Lemma). Let D be a non-simple descriptor and let D′ be a child descriptor of D.

1. If D′ is simple, then |B(D′)| ≤ |B(D)|+ k +1.
2. If D is small, then |V (D′)| ≤ |V (D)|/2+3k +3 and |B(D′)| ≤ 3k +3.
3. If D is large, then |B(D′)|< |B(D)|.

Proof. The claim for simple D′ follows from the fact that its bag is of the form B∪ S with |S| ≤
k + 1. If D = (B,v) is small, then each Bi can contain at most |B|+ |S| ≤ 2k + 2 + k + 1 = 3k + 3
vertices as claimed. The chosen separator S separates V (G) in G(D). Then each component Ci of
G[I(D)− S] can contain at most half the vertices of V (D) and, hence, V (Di) can contain at most
|V (D)|/2 + |B|+ |S| ≤ |V (D)|/2 + 2k + 2 + k + 1 vertices as claimed. If D is large, then S separates
B in V (D). This means that each Bi can contain at most |B|/2 vertices from B and must hence have
size at most |B|/2 + |S|. Since D is large, we have |B| ≥ 2k + 3 and, therefore, |S| = k + 1 < |B|/2.
We conclude that |Bi| ≤ |B|/2+ |S|< |B|/2+ |B|/2 = |B|.

We are now ready to define the desired descriptor decomposition and to show that it is, indeed, a
descriptor decomposition, has logarithmic depth, and is logspace-computable.

Definition 3.10. Let G be an undirected, connected graph with tw(G) ≤ k. Let M(G) be the graph
whose vertex set contains all descriptors D in G with |B(D)| ≤ 3k +3 for non-simple D and |B(D)| ≤
4k +4 for simple D and where there are edges from each descriptor exactly to its child descriptors.

Lemma 3.11. The graph M(G) is a descriptor decomposition of G.

Proof. By the size lemma, M is well-defined, that is, the child descriptors do, indeed, have the
maximum sizes 3k+3 or 4k+4. Next, M contains DG. Concerning the four properties of a descriptor
decomposition, we argue as follows. Consider the child descriptors D1, . . . , Dm, and possibly D0
of a descriptor D. First, by construction each G(Di) is clearly a subset of G(D). The set I(D0) is
empty and the other interiors I(Di) are exactly the components Ci and, thus, subsets of I(D). The
construction also ensures that V (Di) (V (D) for i∈ {1, . . . ,m} and, if D0 is present, ∅= I(D0) (I(D).
Second, each G(Di) contains the vertex vi, which is from the interior of D, and V (D0) also contains
an interior vertex. Third, no Ci is connected to a vertex in another component. Hence, the interior
vertices of the Di are not part of any other V (D j). Fourth, every edge in G(D) that is not between
two vertices from B(D) is either inside a component Ci and thus included in G(Di); or it is between a
vertex in a component Ci and a vertex in B(D)∪S and thus, again, included in G(Di); or it is between
a vertex in S−B(D) and a vertex in B(D) and thus included in G(D0).

Lemma 3.12. The tree decomposition T (M(G)) has width at most 4k +3 and depth at most c log2 n,
where c is a constant depending only on k and n is the number of vertices of G.

Proof. Concerning the width, observe that all bags of T (M) attached to normal nodes have maximum
size 4k +4. For interaction nodes, the bag attached to the node is a subset of B∪S with |B| ≤ 3k +3
and |S| ≤ k + 1. Concerning the depth, let (D1, . . . ,Dm) be a path in T (M). On this path, normal
and interaction nodes alternate and we focus only on the normal nodes. Because of the size lemma,
if there are several large descriptors in a row, each time the bag size decreases by one, so after at

10

most k +1 steps there must be a small descriptor. Then again by the size lemma, the size of the next
V (Di+1) is at most half the size of V (Di) plus some constant. We conclude that the length of the path
can be at most logarithmic.

Lemma 3.13. For every k≥ 1, there is a logspace dtm that on input of any graph G with tw(G)≤ k
outputs M(G).

Proof. Since the size of the vertex set of M(G) is polynomially bounded, all we need to show is
that a logspace dtm can compute the set of child descriptors of a descriptor D. For this, it finds
the separator S by testing for each possible set S of size k + 1 whether it separates the correct set
in G(D). For this, the machine uses Reingold’s algorithm [36] to determine the components into which
S separates G(D). The machine then picks one such S and then determines, again using Reingold’s
algorithm, the sets Bi and outputs the desired child descriptors.

3.3 Computing Balanced Binary Tree Decompositions.

Our objective is to show that we can turn any tree decomposition of logarithmic depth into a balanced
binary tree decomposition via an appropriate logspace dtm.

An embedding of a tree T into a tree T ′ is an injective mapping ι : V (T)→ V (T ′) such that for
every pair of nodes a,b ∈V (T) there is a path from a to b in T iff there is a path from ι(a) to ι(b)
in T ′, and the root of T is mapped to the root of T ′. Given two embeddings ι : V (T)→ V (T ′) and
κ : V (T ′)→V (T ′′), note that the composition κ ◦ ι : V (T)→V (T ′′) is also an embedding. Given an
embedding ι : V (T)→ V (T ′), we call a node w of T ′ a white node if there is no node n in T with
ι(n) = w. An example of an embedding is shown below, where the embedding maps each node of the
left tree to the node with the same label in the right tree. The unlabeled nodes are exactly the white
nodes.

Tree T : a

b c d

e f

Tree T ′ : a

b

c

d

e

f

Given a tree T , our objective is to reduce the degree of T ’s nodes by computing, in logarithmic
space, a binary tree T ′ together with an embedding of T into T ′. It is easy to compute some binary
tree T ′ into which we can embed T by replacing high-degree nodes by little binary trees, but if T
has height h, the resulting tree T ′ may have height up to h log2 n. In particular, this transformation
will transform a tree of height O(logn) into a tree of height O(log2 n). The theorem below shows
that a more careful balancing of high-degree nodes allows us to do much better; we expect that this
approach is not completely new, but could not find it in the literature.

Theorem 3.14. There is a logspace dtm that on input of any tree T with n vertices and height h
outputs a binary tree T ′ of height at most O(h+ logn) together with an embedding ι : V (T)→V (T ′).

Proof. It suffices to describe how T can be embedded into a tree T ′ of height O(h+ logn) such that
each node of T ′ has degree at most 3. Clearly, if we can achieve this in logarithmic space, we can
also embed T into a binary tree by splitting every node of T ′ of degree 3 and adding white children
to nodes of degree 1. This will at most double the height of T ′.

On input T , the machine treats every node v ∈V (T) independently and only considers the nodes
v of degree 4 or more. Given such a node v, let u1, . . . , uk be its children in T . Let ni denote the
number of leafs in the subtree of T rooted at ui. For each v the machine computes (see below) a
ternary tree Sv such that v is the root of Sv and the children of v in T are exactly the leafs of Sv and all

11

other nodes are white nodes. In the resulting tree T ′ we then remove the edges from v to its children
and add the new (white) nodes of the tree Sv together with its edges.

The tree Sv is constructed as follows. Each node u of Sv will be labeled by an interval [i, j] ⊆
{1, . . . ,k}, denoted Iu. Such an interval tells us which of v’s children in T are present in the subtree
rooted at u in Sv. In particular, the root v of Su is labeled with the interval Iv = [1,k] and each leaf ui

is labeled with the singleton interval Iui = [i, i]. For each internal node u of Sv its children are labeled
with intervals that form a partition of Iu. We next describe how these partitions are chosen.

If Iu = [i, j] consists of at most three elements, we can trivially partition it so that the children are
all leafs. Otherwise, let Iu contain four or more indices. For an interval I ⊆{1, . . . ,k}, let nI denote the
sum ∑i∈I ni. We choose a number s ∈ Iu according to the following rule: If there is some s ∈ Iu with
ns > nIu/2, choose this s; otherwise let s ∈ Iu be minimal such that n[i,s] > nIu/2, but n[i,s−1] ≤ nIu/2.
Let J1 = [i,s−1] and J2 = [s+1, j] and let u have three children with the attached intervals J1, [s,s],
and J2. Observe that nJ1 ≤ nIu/2 and also nJ2 ≤ nIu/2. An example of how the partitioning works is
shown below:

v and its children
v

u1

n1 = 3

u2

n2 = 3

u3

n3 = 10

u4

n4 = 4

u5

n5 = 100

u6

n6 = 100

Tree Sv
v

u1 u2

u3 u4

u5 u6

n[1,6] = 220

n[1,4] = 20

n[1,2] = 6

n[6,6] = 100

n[4,4] = 4

s = 5

s = 3

It remains to prove two properties: First, we need to show that the trees Sv can all be computed
in logspace and, second, we need to show that the height of the resulting T ′ is at most O(h+ logn).

For the first claim, we use Lemma 3.2 to compute Sv. The following graph M is a mangrove:
Its vertices are all non-empty intervals [i, j]⊆ {1, . . . ,k}. For non-singleton intervals there are edges
exactly to the two or three intervals that make up the partition of the interval as described above. Note
that the set of vertices reachable from the interval [1,k] in M is exactly the desired tree Sv. A transitive
closure R of M’s related vertices is given by the graph in which there is an edge from every interval I
to every interval J with J (I. By Lemma 3.2 we can then compute the set of nodes reachable in M
from [1,k] in logarithmic space.

For the second property, consider any root-to-leaf path of T ′ and consider the sequence (I1, . . . , Ik)
of intervals attached to the nodes on this path. Then nI1 ≥ ·· · ≥ nIk . Furthermore, suppose there are
two white nodes in a row on this path and let Ii and Ii+1 be the intervals attached to these nodes.
We claim that nIi+1 ≤ nIi/2: Since the second node is white, it must be one of the intervals J1 or J2
created in a partitioning step. However, both of these intervals have size at most nIi/2. This shows
that there can be at most log2 n white nodes on the path whose predecessor is also white. Since there
are at most h non-white nodes on the path, we get a height of at most 2h+ dlog2 ne.

Corollary 3.15. For every c, there is a logspace dtm that on input of any tree T with n vertices and
height at most c · log2 n outputs a balanced binary tree T ′ together with an embedding ι : V (T)→V (T ′).

Proof. By Theorem 3.14, on input T we can compute, in logarithmic space, an embedding into a
binary tree T ′ of height at most h := (2c+1)dlog2 ne. We can then embed T ′ into a balanced binary
tree T ′ of height exactly h: For every leaf l of T ′ that is at a height hl < h, add new white nodes to
form a balanced binary tree of height h−hl and root l. Computing this second embedding can clearly
be done in logspace.

Lemma 3.16. There is a logspace dtm that on input of any logarithmic depth tree decomposition of
a graph G outputs a balanced, binary tree decomposition of G of the same width.

12

Proof. Given a tree decomposition (T,B), the machine applies Corollary 3.15 to T , yielding a balanced
binary tree T ′ and an embedding ι : V (T)→V (T ′). We label the nodes n ∈V (T ′) with bags B′(n) as
follows: Find the first non-white node n′ on the path from n to the root and let v ∈V (T) be the node
with ι(v) = n′. Then B′(n) = B(v). The resulting labeled tree T ′ is clearly a tree decomposition of A
of the same width as T .

4 Logspace Cardinality Version of Courcelle’s Theorem

In this section we prove Theorem 1.3, the logspace cardinality version of Courcelle’s Theorem. We
follow a classical method of proving Courcelle’s Theorem: Starting with a tree decomposition of a
structure A and a formula φ , we construct a labeled tree T and a formula ψ such that A |= φ iff
T |= ψ . Using standard arguments, one can then construct a tree automaton M that decides whether
T |= ψ holds. The main new problem is showing how runs of the automaton can be used to determine
the desired solution histograms. This is done by constructing special arithmetic trees that we call
convolution trees and by showing that they can be evaluated in logarithmic space.

An s-tree structure is a τs-tree-structure T = (V,ET ,PT1 , . . . ,PTs) over the vocabulary τs-tree =
{E2,P1

1 , . . . ,P1
s } where (V,ET) is a tree. An s-tree structure is binary or balanced, if (V,ET) is

binary or balanced, respectively.

Lemma 4.1. Let k ≥ 1 and let φ(X1, . . . ,Xd) be an mso-τ-formula. Then there are an s≥ 1, an mso-
τs-tree-formula ψ(X1, . . . ,Xd), and a logspace dtm that on input of any τ-structure A with universe A
and tw(A)≤ k outputs a balanced binary s-tree structure T such that for all indices i ∈ {0, . . . , |A|}d

we have histogram(A,φ)[i] = histogram(T ,ψ)[i].

Proof. Our proof is a variant of the proof by Arnborg et al. [3] with three main differences: First, we
work directly on arbitrary structures instead of graphs. Second, we argue that the transformations can
be performed in logarithmic space. Third, we extend the reduction so that it preserves the solution
histogram without using an additional dedicated node weight function.

Let φ(X1, . . . ,Xd) be a fixed mso-τ-formula and let A be a τ-structure of tree width at most k.
We first explain how the s-tree structures T is constructed in logarithmic space. The machine first
constructs a balanced binary tree decomposition T of A of width k′ = 4k +3 using Lemma 3.1. The
machine then builds a preliminary s-tree structure T , where s will be specified later. The preliminary
s-tree structure will neither be binary nor balanced, but it will be easy to fix this later.

The node set of T is the union of two disjoint sets VB and VE of nodes, which we call the bag
nodes and the element nodes. The idea is that the bag nodes induce exactly the tree decomposition
and to each bag node we attach a bunch of element nodes that tell us which elements of A’s universe
are present in the bag node. In detail, the set VB is exactly V (T). The set VE is the disjoint union
of the sets {an

1, . . . ,a
n
rn
} for n ∈V (T) with attached bag B(n) = {a1, . . . ,arn}, where some ordering is

chosen for each bag. For an element node x = an
i , we write n(x) for the node n ∈V (T), we write i(x)

for the index i, and we write a(x) for the element ai ∈ A. The edges of T are as follows: All edges of
the tree decomposition T are also present in T . Additionally, for each x ∈ VE there is an edge from
n(x) to x.

Before we describe the s unary predicates that are present in T , we first explain how a special
coloring of the element nodes can be used to determine which element nodes represent the same
element from A’s universe. Let us call a coloring C : VE → {1, . . . ,2k′+ 2} of the element nodes
valid if for every two element nodes x and y for which n(x) and n(y) are identical or adjacent in T ,
we have C(x) = C(y) iff a(x) = a(y). (Note that element nodes x and y with non-adjacent n(x) and
n(y) can have the same color even though a(x) 6= a(y).) We make some observations concerning valid
colorings:

13

1. A valid coloring can be obtained as follows: Assign up to k′+1 colors to the elements of the
root bag. Then, given a bag node n whose element nodes are already colored and a child bag
node n′, the colors of the element nodes of n′ are determined as follows: Given an element
node x with n(x) = n′, if there is an element node y with n(y) = n and a(x) = a(y), assign the
color C(y) to x. Otherwise, choose a new color for x. We will not run out of colors in this
process, since every bag contains at most k +1 elements.

2. A valid coloring can be computed in logarithmic space: To determine the color of an element
node x, the algorithm can walk down from the root to n(x), just keeping track of the colors of
the elements of the current node’s bag.

3. For each color c ∈ {1, . . . ,2k′+ 2}, consider the set Vc = {n(x) | C(x) = c,x ∈ VE} and the
connected components of T [Vc]. Then these components are in one-to-one correspondence to
the universe of A.

4. There is an mso-τs-tree-formula ψequ(x,y) that is true if x and y are element nodes for which n(x)
and n(y) are in the same of the above components. This formula quantifies over the nodes on
the path between the two nodes.

a c d

b

For every color c and every component of T [Vc] we choose exactly one
representative element node. An example of the construction of T for the tree
decomposition {b,c}{a,b} {c,d} is shown right. The element nodes are the
small nodes, whose colors encode the bags locally. Possible representative nodes
of the elements of the universe {a,b,c,d} are indicated.

We can now describe the s unary predicates that are present in T . First, there is a set PTB that is
true for a node of T iff it is a bag node. Second, there are 2k′+ 2 sets PT1 , . . . , PT2k′+2 that encode
the coloring of the element nodes: x ∈ PTc iff C(x) = c. Third, there is a predicate PTR that singles out
the representative element nodes. Note that there is a one-to-one correspondence between PTR and the
universe of A. This will allow us to obtain a histogram preserving reduction by only allowing nodes
in PTR to be contained in the sets that are used for the free relation variables of ψ .

To represent a relation RA of arity r of A, we introduce new predicates PTi1,...,ir, j for every j ∈
{1, . . . ,r} and i j ∈ {1, . . . ,k′+ 1}. They locally encode the tuples of RA at the bags with (i1, . . . , ir)
being the local indices of the element of a tuple of RT and j being the position of an element in the
tuple. In detail, for every tuple (x1, . . . ,xr) ∈V r

E with n(x1) = · · ·= n(xr) and (a(x1), . . . ,a(xr)) ∈ RA,
let x j ∈ PTi(x1),...,i(xr), j for j ∈ {1, . . . ,r}. We make the following observations:

1. Since a tree decomposition puts the elements of a tuple completely into at least one bag, for
all tuples (a1, . . . ,ar) ∈ RA there are element nodes x1, . . . , xr with n(x1) = · · · = n(xr) and
x1 ∈ PTi(x1),...,i(xr),1, . . . , xr ∈ PTi(x1),...,i(xr),r.

2. There is an mso-τs-tree-formula ψR(x1, . . . ,xr), where the xi are first-order variables, that is true
for representative element nodes xi iff (a(x1), . . . ,a(xr)) ∈ RA: The formula tests whether there
are element nodes y1, . . . , yr such that ψequ(x1,y1)∧·· ·∧ψequ(xr,yr), the yi are children of the
same bag node, and there is an index tuple (i1, . . . , ir) with Pi1,...,ir,1(y1)∧·· ·∧Pi1,...,ir,r(yr).

3. The PTi1,...,ir, j can be constructed in logarithmic space.

The structure T is neither balanced nor binary. However, this can easily be fixed: Just as in the
proof of Lemma 3.16 we introduce white nodes and replace high-degree nodes by small binary trees
and fill up the tree so that it becomes balanced. However, the argument is actually simpler than in
the proof of Lemma 3.16 since we start with a tree of bounded degree. We introduce a predicate
PTW , where T is now the resulting balanced, binary tree, that is true exactly for the introduced white
nodes. The formulas ψequ and ψR for R ∈ τ can then easily be adjusted so that they take the presence
of white nodes into account.

This concludes the construction of the s-tree structure T , where s is chosen such that all of the PTi
described above are accounted for. The tree can, as claimed, be constructed in logarithmic space.

14

It remains to explain how we obtain the formula ψ from φ . This can be achieved via the following
transformation: First, extend the formula φ such that only elements and subsets of PTR are permissible
for the free and bounded variables. Second, substitute x = y by ψequ(x,y). Third, substitute every
R(x1, . . . ,xr) with the formula ψR(x1, . . . ,xr).

The next step is to establish a relation between s-tree structures and tree automata. For this, given
a binary s-tree structure T = (V,ET ,PT1 , . . . ,PTs) and sets S1, . . . ,Sd ⊆V let us write T (T ,S1, . . . ,Sd)
for the tree (V,ET) where we label each node v ∈V with the bitstring l1 . . . lsx1 . . .xd ∈ {0,1}s+d with
li = 1 ⇐⇒ v ∈ PTi and xi = 1 ⇐⇒ v ∈ Si. An example is shown right for the 1-tree structure T with

1

2

4 5

3

T (T ,∅,{1,4})

101

000 100

001 100

V = {1,2,3,4,5}, ET = {(1,2),(1,3),(2,4),(2,5)}, PT1 = {1,3,5}, S1 = ∅, and
S2 = {1,4}. We write T (T) in case d = 0. A tree automaton can work on
T (T ,S1, . . . ,Sd) if we choose a distinguished left child for each inner node. Dif-
ferent versions of the following fact are used in many versions of Courcelle’s
Theorem, the below formulation is implicitly shown in [3]. To prove it, one in-
ductively constructs tree automata for subformulas and combines them to automata
for composed formulas.

Fact 4.2. For every s ≥ 0 and every mso-τs-tree-formula φ(X1, . . . ,Xd), there is a tree automaton M
with alphabet Σ = {0,1}s+d such that for all binary s-tree structures T and all subsets S1, . . . ,Sd ⊆V
we have T |= φ(S1, . . . ,Sd) iff M accepts T (T ,S1, . . . ,Sd).

In view of Fact 4.2 and Lemma 4.1, we need to determine how many sets S1, . . . ,Sd ⊆ V of
certain sizes make M accept T (T ,S1, . . . ,Sd). We reduce this problem to evaluating convolution trees.
In the following, an [r]d-array is an d-dimensional array of non-negative integers where all indices

∗

(
2 3
1 1

)
+

(
1 0
0 1

) (
2 0
1 0

)

(6 9 0
5 8 3
1 2 1

)
(

3 0
1 1

)
i = (i1, . . . , id) are elements of the index set [r]d = {0, . . . ,r− 1}d . We call r the
range. The addition of two arrays is defined component-wise in the obvious way. The
convolution of an [r]d-array A and an [s]d-array B is the [r + s−1]d-array C = A∗B
defined by C[i] = ∑ j∈[r]d ,k∈[s]d , j+k=i A[j] ·B[k]. A convolution tree T is a tree whose
leafs are labeled by arrays of appropriate sizes and whose inner nodes are labeled by
+ or ∗. Its value val(T) is the array resulting from recursively applying the operation
in each node to the values of the child trees. In the right example the (2×2)-matrices
at the leafs are [2]2-arrays; position (0,0) lies at the upper left corner.

Lemma 4.3. Let M be a tree automaton with alphabet {0,1}s+d . Then there exists a logspace dtm
that maps every binary balanced s-tree structure T to a convolution tree T where val(T)[i1, . . . , id] is
exactly the number of sets S1, . . . ,Sd ⊆V with |S j|= i j for which M accepts T (T ,S1, . . . ,Sd).

Proof. For this proof, we introduce the following terminology: Given a set A, a multicoloring of A
is a tuple (A1, . . . ,Ad) of subsets A j ⊆ A for j ∈ {1, . . . ,d}. Given two disjoint sets A and B and sets
of multicolorings X and Y of A and B, respectively, we write X ⊗Y for the set of multicolorings
{(A1 ∪B1, . . . ,Ad ∪Bd) | (A1, . . . ,Ad) ∈ X ,(B1, . . . ,Bd) ∈ Y}. Given a set X of multicolorings of A,
let histogram(X) denote the [|A|+ 1]d-array whose entry at index i = (i1, . . . , id) is the number of
multicolorings (A1, . . . ,Ad) ∈ X with |A1| = i1, . . . , |Ad | = id . We make two simple, but useful
observations: First, given two disjoint sets X1 and X2 of multicolorings of the same set A, we have
histogram(X1 ∪X2) = histogram(X1)+ histogram(X2). Second, given two disjoint sets A and B and
sets of multicolorings X and Y of A and B, respectively, then histogram(X ⊗Y) = histogram(X) ∗
histogram(Y).

Let T be an s-tree structure with node set V . To simplify the induction later on, we also allow
the “empty” s-tree structure T with V = ∅. The desired convolution tree T has an +-node at the
root whose children are the trees C(T ,q), to be defined in a moment, for q ∈ Qa. For each state
q of M, let S(T ,q) be the set of multicolorings (S1, . . . ,Sd) of V for which M assigns the state

15

q to T (T ,S1, . . . ,Sd). Provided we can construct the convolution trees C(T ,q) in such a way that
val

(
C(T ,q)

)
= histogram

(
S(T ,q)

)
, then val(T) = ∑q∈Qa histogram

(
S(T ,q)

)
is, indeed, the correct

value. It remains to explain how the C(T ,q) are defined. We give an inductive definition in the
following.

First, let T be empty. Then V = ∅ and [|V |+ 1]d = {(0, . . . ,0)}. Let C(T ,q) be a single leaf
whose attached array is a single entry, which we set to 1 for q = q0 and to 0 otherwise. Then the
value of this tree is, indeed, histogram

(
S(T ,q)

)
since the automaton assigns q0 to the empty tree and

all Si can only be empty.
Second, let T have root r and let l be the label of the root in T (T). Let Tleft and Tright be the

left and right subtrees and let Vleft and Vright be their node sets, respectively. Then the root of the
tree C(T ,q) is a +-node that has one child node for each triple (qleft,qright,x) ∈ Q×Q×{0,1}d with
δ (qleft,qright, lx) = q. Each child node is a ∗-node (a convolution node), which has three children:
One child is C(Tleft,qleft), one child is C(Tright,qright), and one child is a leaf to which we attach the
histogram of the singleton set Ix = {(A1, . . . ,Ad)}, where (A1, . . . ,Ad) is the multicoloring of A = {r}
where for every j ∈ {1, . . . ,d} we have A j = {r} if the jth bit of x is 1 and A j = ∅, otherwise. An
examples of this construction is shown below.

r

Tleft Tright

Tree T : Tree C(T ,q) : +

∗

C(Tleft,q2) C(Tright,q1)
(

0 0
0 1

). ∗

C(Tleft,q5) C(Tright,q7)
(

0 0
1 0

)
present if
δ
(
q5,q7, l10

)
= qpresent if

δ
(
q2,q1, l11

)
= q

It remains to show that val
(
C(T ,q)

)
= histogram

(
S(T ,q)

)
holds. For a triple (qleft,qright,x) ∈

Q×Q×{0,1}d , let S(qleft,qright,x) be the set of all multicolorings (S1, . . . ,Sd) ∈ S(T ,q) of V such
that

1. M assigns qleft to Tleft(S1∩Vleft, . . . ,Sd ∩Vleft),
2. M assigns qright to Tright(S1∩Vright, . . . ,Sd ∩Vright), and
3. the jth bit of x is 1 iff r ∈ S j.

Then S(T ,q) is the disjoint union of the S(qleft,qright,x) with δ (qleft,qright, lx) = q. Thus, the his-
togram of S(T ,q) is the sum of the histograms of the S(qleft,qright,x). Next, by the definition of
S(qleft,qright,x), it can be expressed as S(Tleft,qleft)⊗ S(Tright,qright)⊗ Ix. This implies that the his-
togram of S(qleft,qright,x) is the convolution of the histograms of S(Tleft,qleft), S(Tright,qright), and Ix.

The tree T can be computed recursively starting from the root of a given a balanced binary s-tree
structure. For every node we only have to store a constant number of bits that depend on the transition
function of M. Together with the fact that the input tree has logarithmic depth, the overall stack space
is bounded by a function of M times the logarithm of the input size.

All that remains to be done is to evaluate convolution trees in logarithmic space. For this we
introduce a bit of terminology. Let N and R be two fixed bases, both to be chosen later. Given an
[r]d-array A, let num(A) = ∑i∈[r]d A[i]Ni1+i2R+···+idRd−1 . Trivially, num(A + B) = num(A) + num(B).
For an [r]d-array A and an [s]d-array B we have num(A∗B) = num(A) ·num(B), because

num(A) ·num(B) =
(

∑ j∈[r]d A[j]N j1+ j2R+···+ jdRd−1
)(

∑k∈[s]d B[k]Nk1+k2R+···+kdRd−1
)

= ∑ j∈[r]d ,k∈[s]d A[j]B[k]N(j1+k1)+(j2+k2)R+···+(jd+kd)Rd−1

= ∑i∈[r+s−1]d

(
∑ j∈[r]d ,k∈[s]d , j+k=i A[j]B[k]

)
Ni1+i2R+···+idRd−1

= num(A∗B).

Lemma 4.4. There exists a logspace dtm that on input of any convolution tree outputs its value.

Proof. For a convolution tree T let R be the sum of all ranges of leaf arrays. Then val(T) will be an
[r]d-array for some r ≤ R. Let n denote the number of T ’s nodes, let m denote 1 plus the maximum

16

value of any integer present in any of its leaf arrays, let M denote 1 plus the maximum integer present
in the array val(T). We claim that M ≤ (Rdm)n holds, which can be seen by structural induction:
If T is a leaf, the claim is obviously correct. If T ’s root is a +-node with child trees T1 and T2,
then M ≤M1 +M2 and, by the induction hypothesis, this can be bounded by (Rd

1m1)n1 +(Rd
2m2)n2 ≤

(Rdm)n1 +(Rdm)n2 ≤ (Rdm)n1+n2 ≤ (Rdm)n. If T ’s root is a convolution node, we have M≤Rd ·M1 ·M2
and, by the induction hypothesis, this is bounded by Rd(Rd

1m1)n1(Rd
2m2)n2 ≤ (Rdm)n1+n2+1 = (Rdm)n.

On input of a convolution tree T the machine first computes the length p of the binary representation
of (Rdm)n. Then p ≤ log2(R

dm)n + 1 = nd log2 R + n log2 m + 1 is polynomial in the length of any
reasonable encoding of T and p bits will suffice to encode any number encountered during an evaluation
of the tree T . In particular, setting N = 2p+1, for all i ∈ [r]d the integer val(T)[i1, . . . , id] can be found
at the p bits prior to position i1 + i2R+ · · ·+ idRd−1 from the right (least-significant) end of the binary
representation of num(val(T)). As an example, for N = 24 and R = 3, the entry 3 at index (0,1) of
the [2]2-array A =

(
1 3
2 4

)
can be found at the underlined bits of num(A) = 1N0·R0+0·R1

+2N1·R0+0·R1
+

3N0·R0+1·R1
+4N1·R0+1·R1

= 274465 = 010000110000001000012.
The machine maps the convolution tree T to an arithmetic tree T ′ whose leafs are labeled with

ordinary integers by replacing every leaf array A by num(A) and every convolution node by a multi-
plication node. Then, since num(A+B) = num(A)+num(B) and num(A∗B) = num(A) ·num(B), we
immediately get that the value of the resulting ordinary arithmetic {+,×}-tree is num(val(T)). Since
evaluating {+,×}-trees can be done in logarithmic space [5, 12, 14, 25], we get the claim.

5 Logspace Version of Bodlaender’s Theorem

In this last section we prove Theorem 1.1, the logspace version of Bodlaender’s Theorem. For the proof,
we first need to show that tree-width-k ∈ L holds for all k. Then, we reapply the ideas from Section 3,
only we make sure that in the constructed descriptor decomposition M the implicit tree decomposition
T (M) has width k. The first step toward proving Theorem 1.1 is thus proving Lemma 1.4.
Proof of Lemma 1.4. First, we need to show that tree-width-k ∈ L holds for all k. It is well known
[38, 21] that for every k the graph property “the graph has tree width k” can be characterized by a
finite set of forbidden minors. Furthermore, it is also well known [3], that the question of whether
a graph contains a given minor is expressible in mso-logic. This allows us to decide tree-width-k
as follows: On input of a graph G, use Lemma 3.1 to obtain a tentative tree decomposition T of G.
Then, test whether the output is, indeed, a tree decomposition of G. This test can easily be performed
in logarithmic space. If T is not a tree decomposition of G of width at most 4k + 3, we know that
tw(G) > k and reject; which is correct since the algorithm from Lemma 3.1 will always output a valid
tree decomposition in case tw(G) ≤ k. We can now apply Theorem 1.2 to G for the mso-formula φ

that characterizes tree width k. Since, internally, Theorem 1.2 makes use of the tree decomposition
from Lemma 3.1, we can conclude that Theorem 1.2 will correctly decide whether G |= φ holds.

Second, we need to show that for every k ≥ 1 the problem tree-width-k is hard for L. For
a fixed k ≥ 1, we reduce the well-known L-complete problem acyclicity for undirected graphs to

v1
1

v2
1

v3
1

v1
2

v2
2

v3
2

v1
3

v2
3

v3
3

v1
4

v2
4

v3
4

tree-width-k via the following first-order reduction: On input
of an undirected graph G with V (G) = {v1, . . . ,vn}, build a new
undirected graph G′ as follows: For each vertex vi ∈ V (G) the
set V (G′) contains k vertices v1

i , . . . , vk
i . In the edge set E(G′)

they are connected so that they form a k-clique. Next, for each
edge (vi,v j) ∈ E(G) with i < j, the following edges are present
in E(G′): For all p ∈ {1, . . . ,k} and q ∈ {p, . . . ,k} there is an
edge between vq

i and vp
j . As an example, the graph v1 v2 v3

v4

is mapped to the graph shown right for k = 3.

17

We claim that G is acyclic iff G′ has tree width k. To prove this, first assume that G is acyclic.
Then each component of G′ will be a k-tree and, thus, G will have tree width k. To see this, note
that a tree decomposition of a component of G′ can be obtained from G as follows: Attach the bag
{v1, . . . ,vk} to each vertex v of G. Then, for each edge (vi,v j) of G with i < j, replace the edge by a
path of length k and attach the following bags to the new vertices: {v1

i , . . . ,v
k
i ,v

1
j}, {v2

i , . . . ,v
k
i ,v

1
j ,v

2
j},

. . . , {vk
i ,v

1
j , . . . ,v

k
j}. The resulting graph is clearly still acyclic, its bags cover all edges of G′, and the

subgraphs of all vertices whose bags contain a given vertex are connected.
Second assume that G contains a cycle. We show that G′ contains a (k+2)-clique as a minor and,

since the tree width of a graph does not increase by taking minors [21] and for every tree decomposition
each clique is completely contained in at least one bag, this implies tw(G′) > k. Let (v1, . . . ,vr,v1)
be a cycle of G. In the subgraph G′[{v1

1, . . . ,v
k
1}∪ · · ·∪{v1

r , . . . ,v
k
r}], for each j ∈ {2, . . . ,r} merge the

clique {v1
j , . . . ,v

k
j} to a single node v′j. In the resulting minor both nodes v′2 and v′r have edges to all

vertices of the clique {v1
1, . . . ,v

k
1}. By merging the path (v′2, . . . ,v

′
r) into the edge (v′2,v

′
r), we obtain

the (k +2)-clique {v1
1, . . . ,v

k
1,v
′
2,v
′
r}.

Proof of Theorem 1.1. We describe how to construct a tree decomposition of width k for a graph G =
(V,E) with tw(G) ≤ k in logarithmic space. Recall that Lemma 3.6 states that on input of a graph
G together with a descriptor decomposition M of G, we can compute a tree decomposition of G in
logarithmic space. Thus, in the following it suffices to explain how a descriptor decomposition M
of G can be obtained in logarithmic space for which T (M) has width k. Clearly, M has to be different
from the one constructed in Section 3 since we can no longer allow bags larger than k + 1. As we
define the new descriptor decomposition M below, we also explain how M can be constructed via
some logspace dtm.

We start with some preprocessing and trivial cases. If G is not connected, we decompose the
components individually. In case |V | ≤ k +1, we just output a single bag containing all of V and are
done. So, in the following, we may assume that G is connected, tw(G)≤ k, and |V |> k +1.

The following notations will be useful: Let us write KB for the clique with vertex set B. Given
two graphs G = (V,E) and G′ = (V ′,E ′), let G∪G′ = (V ∪V ′,E ∪E ′).

The vertex set V (M) of descriptors contains DG and all descriptors D with |B(D)| = k + 1 such
that there is a tree decomposition T of G(D) in which B(D) is attached to some bag of T . Given
a descriptor D, we can test whether it is an element of V (M) in logarithmic space as follows: We
apply Lemma 1.4 to the graph G(D)∪KB(D) and include D if this graph has tree width at most k.
Observe that, indeed, if there is a tree decomposition T of G(D) in which B(D) is attached to some
bag of T , then this tree decomposition is also a tree decomposition of the same width of G(D)∪KB(D).
The other way round, in every tree decomposition of G(D)∪KB(D) there must be a node whose bag
contains the clique KB(D) (this is a fundamental property of tree decompositions).

To define the edge set E(M), we explain, in the same spirit as in Definition 3.8, which descriptors
are the child descriptors of a given descriptor D ∈V (M). If D is simple, it has no child descriptors.
Otherwise, we search for a bag B′ ⊆V (D) with the following properties:

1. |B′|= k +1 and B′∩ I(D) 6= ∅.
2. There is no edge between a vertex in B(D)−B′ and a vertex in I(D).
3. Let C1, . . . , Cm be the components of the graph G[I(D)−B′]. Then for each i ∈ {1, . . . ,m} the

graph G[V (Ci)∪B′]∪KB′ must have tree width at most k.

Clearly, if B′ with the above properties exists, we can find it in logarithmic space by iterating over all
possible B′ and each time invoking Lemma 1.4 on G[V (Ci)∪B′]∪KB′ . We choose one such B′ and for
every components Ci of G[I(D)−B′] we choose a vertex vi ∈Ci and let all (B′,vi) be child descriptors
of D; additionally, the simple descriptor B′ is a child descriptor of D.

18

We first show that a set B′ with the above properties always exists: Consider a tree decomposition T
of G(D) of width exactly k in which there is a node whose bag is B. Without loss of generality we
can assume that T has the following properties: For every pair (n,n′) ∈ E(T) we have B(n) * B(n′)
and B(n′) * B(n), and every bag has size k + 1. Together with the fact that I(D) is connected, this
implies that B has exactly one neighboring bag B′; otherwise, there are two vertices v and v′ from
different neighboring bags that are connected in G(D), but not in I(D). Using the decomposition T
one can directly see that B′ satisfies all the above properties.

It remains to argue that the resulting graph M is a descriptor decomposition and that the tree
width of T (M) is k +1. To see that M is a descriptor decomposition, first note that DG is an element
of V (M). Concerning the four properties of a descriptor decomposition, properties 1 to 3 follow for
exactly the same reasons as in Lemma 3.11. For property 4, we can account for all edges as follows:
Edges inside the Ci and between Ci and B′ are covered by the graphs G(Di). Edges inside B′ are
covered by the simple descriptor B′. Edges inside B need not be covered. Edges between B−B′ and
I(D) do not exist and B′−B⊆ I(D).

To prove that the width of T (M) is k +1, first note that all bags B(D) attached to normal vertices
of T (M) have size at most k +1 by construction. Second, note that the bag attached to an interaction
vertex Dinteract is a subset of B′. Hence, the size of interaction bags is at most k +1.

6 Conclusion

Like the classical theorems of Bodlaender and of Courcelle, their logspace versions are useful tools in
classifying the complexity of problems on graphs of bounded tree width. We have sketched a number
of applications; indeed our own proof of the logspace version of Bodlaender’s Theorem makes heavy
use of the logspace version of Courcelle’s Theorem. We are confident that applications beyond the
ones indicated will be found.

There are two intriguing open problems that we would like to point out. First, what is the
complexity of the graph isomorphism problem on graphs of bounded tree width? Researches have
steadily lowered the complexity bound from P [7] to TC1 [24] and to LOGCFL [20]. While one
bottleneck in the latest paper [20], namely the construction of tree decompositions in logspace, is
removed by the present paper, it is still unclear whether the complexity can be lowered to L. One
promising approach may be to first study the graph automorphism problem. Another approach is to
use the fact that the information-rich solutions histograms are invariant under isomorphisms. They
might thus serve, for some appropriate formula φ , as a method of canonization. Second, can one
devise logspace algorithms for more general width parameters [26]? One example is clique width,
whose defining decompositions, the k-expressions, can be approximated in polynomial time [34].

References

[1] E. Allender and K.-J. Lange. RUSPACE(logn)⊆DSPACE(log2 n/ log logn). Theory of Computing
Systems 31(5):539–550, 1998. Online at http://dx.doi.org/10.1007/s002240000102

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods 8(2):277–284, 1987.

Online at http://dx.doi.org/10.1137/0608024

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal of
Algorithms 12(2):308–340, June 1991. Online at http://dx.doi.org/10.1016/0196-6774(91)90006-K

19

http://dx.doi.org/10.1007/s002240000102
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/0196-6774(91)90006-K

[4] V. Arvind, B. Das, and J. Köbler. The space complexity of k-tree isomorphism. In Proceedings of
the 18th International Symposium on Algorithms and Computation (ISAAC 2007), pp. 822–833.
Springer, LNCS 4835, 2007. Online at http://dx.doi.org/10.1007/978-3-540-77120-3 71

[5] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers.
SIAM Journal on Computing 21(1):54–58, 1992. Online at http://dx.doi.org/10.1137/0221006

[6] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In Proceedings of the 14th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1988), pp. 1–10.
Springer, LNCS 344, 1989. Online at http://dx.doi.org/10.1007/3-540-50728-0 32

[7] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees. Journal of Algorithms 11(4):631–643, Dec. 1990.

Online at http://dx.doi.org/10.1016/0196-6774(90)90013-5

[8] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing 25(6):1305–1317, 1996.

Online at http://dx.doi.org/10.1137/S0097539793251219

[9] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM Journal on Computing 27(6):1725–1746, 1998.

Online at http://dx.doi.org/10.1137/S0097539795289859

[10] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal 51(3):255–269, 2008.

Online at http://dx.doi.org/10.1093/comjnl/bxm037

[11] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms from
predicate calculus descriptions of problems on recursively constructed graph families. Algorith-
mica 7(1–6):555–581, June 1992. Online at http://dx.doi.org/10.1007/BF01758777

[12] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula
evaluation. SIAM Journal on Computing 21(4):755–780, 1992.

Online at http://dx.doi.org/10.1137/0221046

[13] N. Chandrasekharan and S. T. Hedetniemi. Fast parallel algorithms for tree decomposing and
parsing partial k-trees. In Proceedings of the 26th Annual Allerton Conference on Communication,
Control, and Computing, pp. 283–292, 1988.

[14] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. Theoretical Informatics
and Applications 35(3):259–275, May–June 2001. Online at http://dx.doi.org/10.1051/ita:2001119

[15] S. Cho and D. T. Huynh. On a complexity hierarchy between L and NL. Information Processing
Letters 29(4):177–182, Nov. 1988. Online at http://dx.doi.org/10.1016/0020-0190(88)90057-9

[16] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control
64(1–3):2–22, Jan.–Mar. 1985. Online at http://dx.doi.org/10.1016/S0019-9958(85)80041-3

[17] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 193–
242. Elsevier and MIT Press, 1990.

[18] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs.
Theoretical Computer Science 109(1–2):49–82, Mar. 1993.

Online at http://dx.doi.org/10.1016/0304-3975(93)90064-Z

20

http://dx.doi.org/10.1007/978-3-540-77120-3_71
http://dx.doi.org/10.1137/0221006
http://dx.doi.org/10.1007/3-540-50728-0_32
http://dx.doi.org/10.1016/0196-6774(90)90013-5
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1007/BF01758777
http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1051/ita:2001119
http://dx.doi.org/10.1016/0020-0190(88)90057-9
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/0304-3975(93)90064-Z

[19] B. Das, S. Datta, and P. Nimbhorkar. Log-space algorithms for paths and matchings in k-trees.
In Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS 2010), pp. 215–226. Schloss Dagstuhl LZI, LIPIcs 5, 2010.

Online at http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2456

[20] B. Das, J. Torán, and F. Wagner. Restricted space algorithms for isomorphism on bounded
treewidth graphs. In Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science (STACS 2010), pp. 227–238. Schloss Dagstuhl LZI, LIPIcs 5, 2010.

Online at http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2457

[21] R. Diestel. Graph Theory. Springer, July 2005.
Online at http://diestel-graph-theory.com/index.html

[22] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
Online at http://dx.doi.org/10.1007/3-540-29953-X

[23] G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. Theoretical Computer
Science 270(1–2):761–777, Jan. 2002. Online at http://dx.doi.org/10.1016/S0304-3975(01)00108-6

[24] M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a game. In
Proceedings of the 33rd International Colloquium on Automata, Languages and Programming
(ICALP 2006), pp. 3–14. Springer, LNCS 4051, 2006.

Online at http://dx.doi.org/10.1007/11786986 2

[25] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold circuits for
division and iterated multiplication. Journal of Computer and System Sciences 65(4):695–716,
Dec. 2002. Online at http://dx.doi.org/10.1016/S0022-0000(02)00025-9

[26] P. Hliněný, S.-i. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their
applications. The Computer Journal 51(3):326–362, 2008.

Online at http://dx.doi.org/10.1093/comjnl/bxm052

[27] O. H. Ibarra, T. Jiang, B. Ravikumar, and J. H. Chang. On some languages in NC. In VLSI
Algorithms and Architectures, Proceedings of the 3rd Aegean Workshop on Computing, pp. 64–
73. Springer, LNCS 319, 1988. Online at http://dx.doi.org/10.1007/BFb0040374

[28] A. Jakoby and M. Liśkiewicz. Paths problems in symmetric logarithmic space. In Proceedings
of the 29th International Colloquium on Automata, Languages and Programming (ICALP 2002),
pp. 269–280. Springer, LNCS 2380, 2002. Online at http://dx.doi.org/10.1007/3-540-45465-9 24

[29] A. Jakoby, M. Liśkiewicz, and R. Reischuk. Space efficient algorithms for series-parallel graphs.
Journal of Algorithms 60(2):85–114, Aug. 2006.

Online at http://dx.doi.org/10.1016/j.jalgor.2004.06.010

[30] A. Jakoby and T. Tantau. Logspace algorithms for computing shortest and longest paths in
series-parallel graphs. In Proceedings of the 27th Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2007), pp. 216–227. Springer, LNCS
4855, 2007. Online at http://dx.doi.org/10.1007/978-3-540-77050-3 18

[31] B. Jenner. Knapsack problems for NL. Information Processing Letters 54(3):169–174, May 1995.
Online at http://dx.doi.org/10.1016/0020-0190(95)00017-7

21

http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2456
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2457
http://diestel-graph-theory.com/index.html
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1016/S0304-3975(01)00108-6
http://dx.doi.org/10.1007/11786986_2
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/10.1093/comjnl/bxm052
http://dx.doi.org/10.1007/BFb0040374
http://dx.doi.org/10.1007/3-540-45465-9_24
http://dx.doi.org/10.1016/j.jalgor.2004.06.010
http://dx.doi.org/10.1007/978-3-540-77050-3_18
http://dx.doi.org/10.1016/0020-0190(95)00017-7

[32] J. Lagergren. Efficient parallel algorithms for tree-decomposition and related problems. In
Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS
1990), pp. 173–182 vol.1. IEEE Computer Society, 1990.

Online at http://dx.doi.org/10.1109/FSCS.1990.89536

[33] B. Monien. On a subclass of pseudopolynomial problems. In Proceedings of the 9th Symposium
on Mathematical Foundations of Computer Science 1980 (MFCS 1980), pp. 414–425, LNCS 88,
1980. Online at http://dx.doi.org/10.1007/BFb0022521

[34] S.-i. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Combina-
torial Theory, Series B 96(4):514–528, July 2006.

Online at http://dx.doi.org/10.1016/j.jctb.2005.10.006

[35] B. A. Reed. Finding approximate separators and computing tree width quickly. In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing (STOC 1992), pp. 221–228. ACM,
1992. Online at http://dx.doi.org/10.1145/129712.129734

[36] O. Reingold. Undirected connectivity in log-space. Journal of the ACM 55(4):1–24, Sept. 2008.
Online at http://dx.doi.org/10.1145/1391289.1391291

[37] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms 7(3):309–322, Sept. 1986. Online at http://dx.doi.org/10.1016/0196-6774(86)90023-4

[38] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combi-
natorial Theory, Series B 92(2):325–357, Nov. 2004.

Online at http://dx.doi.org/10.1016/j.jctb.2004.08.001

[39] E. Wanke. Bounded tree-width and LOGCFL. Journal of Algorithms 16(3):470–491, May 1994.
Online at http://dx.doi.org/10.1006/jagm.1994.1022

22

http://dx.doi.org/10.1109/FSCS.1990.89536
http://dx.doi.org/10.1007/BFb0022521
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1145/129712.129734
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1006/jagm.1994.1022

	Introduction
	Preliminaries
	Computing Approximate Tree Decompositions in Logarithmic Space
	Transitive Closures of Mangroves.
	Descriptors and Descriptor Decompositions.
	Computing Balanced Binary Tree Decompositions.

	Logspace Cardinality Version of Courcelle's Theorem
	Logspace Version of Bodlaender's Theorem
	Conclusion

