
Technische Universität München
Department of Informatics
Chair for Efficient Algorithms
Prof. Dr. Ernst W. Mayr/Dr. Jens Ernst
Johannes Nowak

Summer Term 2005
Exercise Sheet 2

3. Mai 2005

Selected Topics in Computational Biology

Due: 10.05.2005 after the lecture

Exercise 1 (10 points)
Construct a suffix tree for the string CTGCCTGA with Ukkonen’s algorithm. Describe
all steps of the construction in detail.

Exercise 2 (10 points)
Show that the size of a suffix tree for a string of length n is Θ(n2) in the worst case if the
edge labels are written explicitly.

Exercise 3 (10 points)
Let S = {S1, . . . , Sk} be a set of k strings of total length n. A generalized suffix tree for
S is a compact Σ+-tree that represents all the suffixes of strings in Sk.

a) Give an O(n)-algorithm that constructs a generalized suffix tree for S.

b) Consider a generalized suffix tree in a dynamic setting, that is, arbitrary strings can
be added to and deleted from S. How can the generalized suffix tree be efficiently
maintained? Why is it easier to delete a whole string of length m than deleting m

arbitrary suffixes from the tree?

Exercise 4 (10 points)
Let S = {S1, . . . , Sk} be a set of k strings of total length n. Develop an O(n)-algorithm
that finds every string Si that is a substring of some other string Sj with 1 ≤ i, j ≤ k,
i 6= j.

Programming Task
Implement Ukkonen’s algorithm for suffix tree construction and a function that tests in
time O(m) whether a pattern P of length m is a substring of T or not. If the pattern
occurs your program should return the number of occurrences, the starting position of
the first occurrence, and the starting position of the last occurrence of the pattern in the
text. Note that there might be Ω(n) occurrences of a pattern. Thus, the tree has to be
augmented with additional information for efficiently answering such queries.

Please respect the following hints and technical details:

• Your implementation should be in plain ANSI C.



• The input strings consist of arbitrary ASCII symbols (thus, the alphabet size is
256). The text and the pattern to search for are specified in a file. The symbol $ is
used as an end marker, both for the text and the patterns. Your program gets the
name of the file as command line argument. The first string in the file is the text for
which a suffix tree has to be constructed. The other strings correspond to patterns
and should be searched for one by one, see the example below.

• You can use the example files available at the exercises homepage to test your im-
plementation. There are six input files along with the corresponding correct output.

• Try to use a space efficient representation of suffix trees, i.e. pay attention to the
constants.

• The output of your program should follow the example below.

Example for input and output of the program

Input:

Heute programmieren wir

einen Algorithmus zur

Suche in Texten.$

te$

wir

ein$

xx$

Output:

Suffix tree: time 0.5 sec

Pattern 1: 2 occurrences, first pos. 4, last pos. 59, time: 0.1 sec

Pattern 2: 1 occurrences, pos. 21, time: 0.2 sec

Pattern 3: 0 occurrences, time: 0.1 sec

2


